Article

Microarray-driven validation of reference genes for quantitative real-time polymerase chain reaction in a rat vocal fold model of mucosal injury.

Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
Analytical Biochemistry (Impact Factor: 2.58). 11/2010; 406(2):214-21. DOI: 10.1016/j.ab.2010.07.021
Source: PubMed

ABSTRACT Relative quantification by normalization against a stably expressed reference gene is a widely used data analysis method in microarray and quantitative real-time polymerase chain reaction (qRT-PCR) platforms; however, recent evidence suggests that many commonly utilized reference genes are unstable in certain experimental systems and situations. The primary aim of this study, therefore, was to screen and identify stably expressed reference genes in a well-established rat model of vocal fold mucosal injury. We selected and evaluated the expression stability of nine candidate reference genes. Ablim1, Sptbn1, and Wrnip1 were identified as stably expressed in a model-specific microarray dataset and were further validated as suitable reference genes in an independent qRT-PCR experiment using 2(-DeltaCT) and pairwise comparison-based (geNorm) analyses. Parallel analysis of six commonly used reference genes identified Sdha as the only stably expressed candidate in this group. Sdha, Sptbn1, and the geometric mean of Sdha and Sptbn1 each provided accurate normalization of target gene Tgfb1; Gapdh, the least stable candidate gene in our dataset, provided inaccurate normalization and an invalid experimental result. The stable reference genes identified here are suitable for accurate normalization of target gene expression in vocal fold mucosal injury experiments.

0 Bookmarks
 · 
82 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transforming growth factor (TGF)-β1 and β3 have been reported to exert differential effects on wound healing, and possibly even account for tissue-specific differences in scar formation. Scarring is particularly detrimental in the vocal fold mucosa (VFM), where destruction of the native extracellular matrix causes irreparable biomechanical changes and voice impairment. Here, in a series of in vitro and in vivo experiments, we identified differences in TGF-β1 and β3 transcription and immunolocalization to various cell subpopulations in naïve and injured rat VFM, compared to oral mucosa (which undergoes rapid healing with minimal scar) and skin (which typically heals with scar). Treatment of cultured human vocal fold fibroblasts with TGF-β3 resulted in less potent induction of profibrotic gene transcription, extracellular matrix synthesis, and fibroblast-myofibroblast differentiation, compared to treatment with TGF-β1 and β2. Finally, delivery of exogenous TGF-β3 to rat VFM during the acute injury phase modulated the early inflammatory environment and reduced eventual scar formation. These experiments show that the TGF-β isoforms have distinct roles in VFM maintenance and repair, and that TGF-β3 redirects wound healing to improve VFM scar outcomes in vivo.
    Disease Models and Mechanisms 10/2013; · 4.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plants with Crassulacean acid metabolism must cope with severe environmental stresses including heatlimited, water-limited, and CO2 -limited environments throughout their life cycles in arid or semiarid habitats. Heat stress affects the rate of photosynthesis and related thermotolerance in many plants. To elucidate the mechanism(s) of heat tolerance and the role(s) of stromal proteomes in the heattolerant plant Agave americana, stromal proteins were extracted from heat-stressed and control plants and subjected to a novel proteomics approach using a Multidimensional Protein Identification Technology (MudPIT) and followed by mass spectrometry. Several differentially expressed stromal proteins were identified under heat stress, and their subcellular localization, as well as their biological and molecular functions, was determined in silico. A total of 58 stromal proteins that play important roles in photosynthesis, defense, plastid metabolic functions, hormonal biosynthesis, stress signal perception, and transduction were identified. Expression of both nuclear-encoded and chloroplast-encoded proteins was reduced under heat stress, suggesting that plants must have undergone disruption of major physiological and metabolic pathways at high temperature stress. Similarly, relative transcript levels of 16 selected stromal genes were analyzed in heat-stressed plants at 3 different temperatures and compared to those of control plants. Both MudPIT and real-time polymerase chain reaction analyses indicated that several proteins/genes were either upregulated or downregulated under heat stress. As there was no correlation between some transcriptomic and proteomics data, this suggested that posttranslational modifications must play some roles in plant thermotolerance and adaptation to high temperatures.
    Plant Molecular Biology Reporter 01/2013; · 5.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Real-time reverse transcription quantitative polymerase chain reaction (qPCR) has become the most frequently used system for studies of gene expression. Manystudies have provided reliable evidence that the transcription levels of reference genes are not constant at different developmental stages and in different experimental conditions. However, suitable reference genes which are stably expressed in polyploid preimplantation embryos of different developmental stages have not yet been identified. Therefore, it is critical to verify candidate reference genes to analyze gene expression accurately in both diploid and polyploid embryos. We examined the expression levels of 12 candidate reference genes in preimplantation embryos of four different ploidies at six developmental stages. Stability analysis of the reference genes was performed by four independent software programs, and the stability of three genes was evaluated by comparison with the Oct4 expression level during preimplantation development in diploid embryos. The expression levels of most genes in the polyploid embryos were higher than that in the diploid embryos, but the increasing degree were disproportionate with the ploidies. There were no significant difference in reference gene expressions among embryos of different ploidies when they reached the morula stage, and the expression level remained flat until the blastocyst stage. Ubc, Ppia, and Pgk1 were the three most stable reference genes in diploid and polyploid embryos.
    PLoS ONE 01/2014; 9(6):e98956. · 3.73 Impact Factor

Full-text

View
0 Downloads
Available from