Article

Early-onset L-dopa-responsive parkinsonism with pyramidal signs due to ATP13A2, PLA2G6, FBXO7 and spatacsin mutations

Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom.
Movement Disorders (Impact Factor: 5.63). 09/2010; 25(12):1791-800. DOI: 10.1002/mds.23221
Source: PubMed

ABSTRACT Seven autosomal recessive genes associated with juvenile and young-onset Levodopa-responsive parkinsonism have been identified. Mutations in PRKN, DJ-1, and PINK1 are associated with a rather pure parkinsonian phenotype, and have a more benign course with sustained treatment response and absence of dementia. On the other hand, Kufor-Rakeb syndrome has additional signs, which distinguish it clearly from Parkinson's disease including supranuclear vertical gaze palsy, myoclonic jerks, pyramidal signs, and cognitive impairment. Neurodegeneration with brain iron accumulation type I (Hallervorden-Spatz syndrome) due to mutations in PANK2 gene may share similar features with Kufor-Rakeb syndrome. Mutations in three other genes, PLA2G6 (PARK14), FBXO7 (PARK15), and Spatacsin (SPG11) also produce clinical similar phenotypes in that they presented with rapidly progressive parkinsonism, initially responsive to Levodopa treatment but later, developed additional features including cognitive decline and loss of Levodopa responsiveness. Here, using homozygosity mapping and sequence analysis in families with complex parkinsonisms, we identified genetic defects in the ATP13A2 (1 family), PLA2G6 (1 family) FBXO7 (2 families), and SPG11 (1 family). The genetic heterogeneity was surprising given their initially common clinical features. On careful review, we found the FBXO7 cases to have a phenotype more similar to PRKN gene associated parkinsonism. The ATP13A2 and PLA2G6 cases were more seriously disabled with additional swallowing problems, dystonic features, severe in some, and usually pyramidal involvement including pyramidal weakness. These data suggest that these four genes account for many cases of Levodopa responsive parkinsonism with pyramidal signs cases formerly categorized clinically as pallido-pyramidal syndrome.

Download full-text

Full-text

Available from: Coro Paisán-Ruiz, Jan 14, 2014
0 Followers
 · 
417 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective FBXO7 mutations (PARK 15), first reported in 2008, are among the monogenic causes of early-onset parkinsonism. Classically, PARK 15 was suggested to correspond to previously described pallido-pyramidal syndrome. Here, we report clinical and genetic findings in a unique family of Kurdish origin with an FBXO7 mutation and presenting with diverse clinical phenotypes. Methods The family consisted of 14 members (12 offspring) of whom three were affected. Two of these three siblings were examined in our clinic. DNA samples from the index case and his elder sister were subjected to homozygosity mapping and exomic sequencing. Results The index case had progressive speech problems, severe apathy, chorea, and tics at presentation and developed very mild parkinsonism and postural instability after 3 years. His sister had young-onset asymmetric tremor-dominant parkinsonism with some atypical features, such as early development of postural instability, tics, and tachyphemic speech. She died of an akinetic-rigid condition and had not developed chorea. A homozygous R498X mutation was found in both patients (NM_012179; chr22:31,224,440). This result was further confirmed by Sanger sequencing in both patients, their consanguineous parents, and their maternal grandfather; the latter three were found to be heterozygous for the mutation (c.C1492T; p.R498X). Conclusions The family presented here broadens the clinical spectrum of parkinsonism to include tics and chorea, in addition to the parkinsonian-pyramidal phenotype, in connection with FBXO7 mutations and points to an intrafamilial phenotypic variation.
    Parkinsonism & Related Disorders 11/2014; 20(11). DOI:10.1016/j.parkreldis.2014.07.016 · 4.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to elucidate the genetic causes underlying early-onset parkinsonism (EOP) in a consanguineous Iranian family. To attain this, homozygosity mapping and whole-exome sequencing were performed. As a result, a homozygous mutation (c.773G>A; p.Arg258Gln) lying within the NH2 -terminal Sac1-like inositol phosphatase domain of polyphosphoinositide phosphatase synaptojanin 1 (SYNJ1), which has been implicated in the regulation of endocytic traffic at synapses, was identified as the disease-segregating mutation. This mutation impaired the phosphatase activity SYNJ1 against its Sac1 domain substrates in vitro. We concluded that the SYNJ1 mutation identified here is responsible for the EOP phenotype seen in our patients probably due to deficiencies in its phosphatase activity and consequent impairment of its synaptic functions. Our finding not only opens new avenues of investigation in the synaptic dysfunction mechanisms associated with parkinsonism, but also suggests phosphoinositide metabolism as a novel therapeutic target for parkinsonism. This article is protected by copyright. All rights reserved.
    Human Mutation 09/2013; 34(9). DOI:10.1002/humu.22372 · 5.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the last decades, studies from our laboratory and other groups using animal models have shown that iron overload, resulting in iron accumulation in the brain, produces significant cognitive deficits. Iron accumulation in the hippocampus and the basal ganglia has been related to impairments in spatial memory, aversive memory, and recognition memory in rodents. These results are corroborated by studies showing that the administration of iron chelators attenuates cognitive deficits in a variety of animal models of cognitive dysfunction, including aging and Alzheimer's disease models. Remarkably, recent human studies using magnetic resonance image techniques have also shown a consistent correlation between cognitive dysfunction and iron deposition, mostly in the hippocampus, cortical areas, and basal ganglia in humans. These findings may have relevant implications in the light of the knowledge that iron accumulates in brain regions of patients suffering from neurodegenerative diseases. A better understanding of the functional consequences of iron dysregulation in aging and neurological diseases may help to identify novel targets for treating memory problems that afflict a growing aging population.
    Journal of Alzheimer's disease: JAD 12/2012; 34(4). DOI:10.3233/JAD-121996 · 3.61 Impact Factor