Defining the functional domain of programmed cell death 10 through its interactions with phosphatidylinositol-3,4,5-trisphosphate.

Department of Pharmacology, School of Medicine, and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America.
PLoS ONE (Impact Factor: 3.53). 07/2010; 5(7):e11740.
Source: PubMed

ABSTRACT Cerebral cavernous malformations (CCM) are vascular abnormalities of the central nervous system predisposing blood vessels to leakage, leading to hemorrhagic stroke. Three genes, Krit1 (CCM1), OSM (CCM2), and PDCD10 (CCM3) are involved in CCM development. PDCD10 binds specifically to PtdIns(3,4,5)P3 and OSM. Using threading analysis and multi-template modeling, we constructed a three-dimensional model of PDCD10. PDCD10 appears to be a six-helical-bundle protein formed by two heptad-repeat-hairpin structures (alpha1-3 and alpha4-6) sharing the closest 3D homology with the bacterial phosphate transporter, PhoU. We identified a stretch of five lysines forming an amphipathic helix, a potential PtdIns(3,4,5)P3 binding site, in the alpha5 helix. We generated a recombinant wild-type (WT) and three PDCD10 mutants that have two (Delta2KA), three (Delta3KA), and five (Delta5KA) K to A mutations. Delta2KA and Delta3KA mutants hypothetically lack binding residues to PtdIns(3,4,5)P3 at the beginning and the end of predicted helix, while Delta5KA completely lacks all predicted binding residues. The WT, Delta2KA, and Delta3KA mutants maintain their binding to PtdIns(3,4,5)P3. Only the Delta5KA abolishes binding to PtdIns(3,4,5)P3. Both Delta5KA and WT show similar secondary and tertiary structures; however, Delta5KA does not bind to OSM. When WT and Delta5KA are co-expressed with membrane-bound constitutively-active PI3 kinase (p110-CAAX), the majority of the WT is co-localized with p110-CAAX at the plasma membrane where PtdIns(3,4,5)P3 is presumably abundant. In contrast, the Delta5KA remains in the cytoplasm and is not present in the plasma membrane. Combining computational modeling and biological data, we propose that the CCM protein complex functions in the PI3K signaling pathway through the interaction between PDCD10 and PtdIns(3,4,5)P3.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Three genetic mutations were found to cause cerebral cavernous malformation (CCM), a vascular anomaly predisposing affected individuals to hemorrhagic stroke. These CCM proteins function together as a protein complex in the cell. Loss of expression of each CCM gene results in loss of in vitro endothelial tube formation. Label-free differential protein expression analysis using multidimensional liquid chromatography/tandem mass spectrometry (2D-LC-MS/MS) was applied to explore the proteomic profile for loss of each CCM gene expression in mouse endothelial stem cells (MEES) compared to mock shRNA and no shRNA control cell-lines. Differentially expressed proteins were identified (p < 0.05). 120 proteins were differentially expressed among the cell-lines. Principal component analysis and cluster analysis show the effects of individual knockdown. In all knockdown cell-lines, altered expression of cytoskeletal proteins is the most common. While all CCM mutations result in similar pathology, different CCM mutations have their own distinct pathogenesis in cell signaling.
    Molecular BioSystems 04/2014; 10(7). · 3.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Programmed cell death 10 (PDCD10) is a highly conserved adaptor protein. Its mutations result in cerebral cavernous malformations (CCMs). In this study, PDCD10 cDNA from the buffy coat of Small Tail Han sheep (Ovis aries) was cloned from a suppression subtractive hybridization cDNA library, named OaPDCD10. The full-length cDNA of OaPDCD10 was 1343bp with a 639bp open reading frame (ORF) encoding 212 amino acid residues. Tissue distribution of OaPDCD10 mRNA determined that it was ubiquitously expressed in all tested tissue samples, and the highest expression was observed in the heart. The differential expression of OaPDCD10 between infected sheep (challenged with Brucella melitensis) and vaccinated sheep (vaccinated with Brucella suis S2) was also investigated. The results revealed that, compared to the control group, the expression of OaPDCD10 from infected and vaccinated sheep was both significantly up-regulated (p<0.05). Moreover, the expression levels of OaPDCD10 from the vaccinated sheep were significantly higher than the infected sheep (p<0.05) after 30days post-inoculation. The recombinant OaPDCD10 (rOaPDCD10) protein was expressed in Escherichia coli BL21 (DE3), and then purified by affinity chromatography. The rOaPDCD10 protein was demonstrated to induce apoptosis and promote cell proliferation. Our studies are intended to discover potential diagnostic biomarkers of brucellosis to discern infected sheep from vaccinated sheep, and OaPDCD10 could be considered as a potential diagnostic biomarker of brucellosis. Copyright © 2014. Published by Elsevier B.V.
    Gene 12/2014; · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cerebral cavernous malformations (CCM) are vascular anomalies caused by mutations in genes encoding KRIT1, OSM and PDCD10 proteins causing hemorrhagic stroke. We examine proteomic change of loss of CCM gene expression. Using human umbilical vein endothelial cells, label-free differential protein expression analysis with multidimensional liquid chromatography/tandem mass spectrometry was applied to three CCM protein knockdown cell lines and two control cell lines: ProteomeXchange identifier PXD000362. Principle component and cluster analyses were used to examine the differentially expressed proteins associated with CCM. The results from the five cell lines revealed 290 and 192 differentially expressed proteins (p < 0.005 and p < 0.001, respectively). Most commonly affected proteins were cytoskeleton-associated proteins, in particular myosin-9. Canonical genetic pathway analysis suggests that CCM may be a result of defective cell-cell interaction through dysregulation of cytoskeletal associated proteins. Conclusion: The work explores signaling pathways that may elucidate early detection and novel therapy for CCM.
    Expert Review of Proteomics 03/2014; · 3.90 Impact Factor

Full-text (2 Sources)

Available from
Jun 10, 2014