Article

Cell-Mediated Neuroprotection in a Mouse Model of Human Tauopathy

Euan MacDonald Centre for Motor Neurone Disease Research, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 07/2010; 30(30):9973-83. DOI: 10.1523/JNEUROSCI.0834-10.2010
Source: PubMed

ABSTRACT Tau protein in a hyperphosphorylated state makes up the intracellular inclusions of several neurodegenerative diseases, including Alzheimer's disease and cases of frontotemporal dementia. Mutations in Tau cause familial forms of frontotemporal dementia, establishing that dysfunction of tau protein is sufficient to cause neurodegeneration and dementia. Transgenic mice expressing human mutant tau in neurons exhibit the essential features of tauopathies, including neurodegeneration and abundant filaments composed of hyperphosphorylated tau. Here we show that a previously described mouse line transgenic for human P301S tau exhibits an age-related, layer-specific loss of superficial cortical neurons, similar to what has been observed in human frontotemporal dementias. We also show that focal neural precursor cell implantation, resulting in glial cell differentiation, leads to the sustained rescue of cortical neurons. Together with evidence indicating that astrocyte transplantation may be neuroprotective, our findings suggest a beneficial role for glial cell-based repair in neurodegenerative diseases.

0 Followers
 · 
99 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Short-term neural stem cell (NSC) transplantation improves cognition in Alzheimer's disease (AD) transgenic mice by enhancing endogenous synaptic connectivity. However, this approach has no effect on the underlying beta-amyloid (Aβ) and neurofibrillary tangle pathology. Long term efficacy of cell based approaches may therefore require combinatorial approaches.
    Stem Cell Research & Therapy 04/2014; 5(2):46. DOI:10.1186/scrt440 · 4.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increased production of amyloid β-peptide (Aβ) and altered processing of tau in Alzheimer's disease (AD) are associated with synaptic dysfunction, neuronal death and cognitive and behavioural deficits. Neuroinflammation is also a prominent feature of AD brain and considerable evidence indicates that inflammatory events play a significant role in modulating the progression of AD. The role of microglia in AD inflammation has long been acknowledged. Substantial evidence now demonstrates that astrocyte-mediated inflammatory responses also influence pathology development, synapse health and neurodegeneration in AD. Several anti-inflammatory therapies targeting astrocytes show significant benefit in models of disease, particularly with respect to tau-associated neurodegeneration. However, the effectiveness of these approaches is complex, since modulating inflammatory pathways often has opposing effects on the development of tau and amyloid pathology, and is dependent on the precise phenotype and activities of astrocytes in different cellular environments. An increased understanding of interactions between astrocytes and neurons under different conditions is required for the development of safe and effective astrocyte-based therapies for AD and related neurodegenerative diseases.
    Biochemical Society Transactions 10/2014; 42(5):1321-1325. DOI:10.1042/BST20140155 · 3.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD), known to be a leading cause of dementia that causes heavy social and financial burdens worldwide, is characterized by progressive loss of neurons and synaptic connectivity after depositions of amyloid-β (Aβ) protein. Current therapies for AD patients can only alleviate symptoms but cannot deter the neural degeneration, thus providing no long-term recovery. Neural stem cells (NSCs), capable of self-renewal and of differentiation into functional neurons and glia, have been shown to repair damaged networks and reverse memory and learning deficits in animal studies, providing new hope for curing AD patients by cell transplantation. Under AD pathology, the microenvironment also undergoes great alterations that affect the propagation of NSCs and subsequent therapeutic efficiency, calling for measures to improve the hostile environment for cell transplantation. This article reviews the therapeutic potential of both endogenous and exogenous NSCs in the treatment of AD and the challenges to application of stem cells in AD treatment, particularly those from the microenvironmental alterations, in the hope of providing more information for future research in exploiting stem cell-based therapies for AD. © 2015 Wiley Periodicals, Inc.
    Journal of Neuroscience Research 01/2015; DOI:10.1002/jnr.23555 · 2.73 Impact Factor