Article

A phenomenological cohesive model of ferroelectric fatigue

Division of Engineering and Applied Science, Graduate Aeronautical Laboratories, California Institute of Technology, MS205-45, 91125, Pasadena, CA, USA; Laboratori de Cà lcul Numèric, Departament de Matemà tica Aplicada III, Universitat Politècnica de Catalunya, E-08034, Barcelona, Spain
02/2006; DOI: 10.1016/j.actamat.2005.10.035
Source: OAI

ABSTRACT We develop a phenomenological model of electro-mechanical ferroelectric fatigue based on a ferroelectric cohesive law that couples mechanical displacement and electric-potential discontinuity to mechanical tractions and surface-charge density. The ferroelectric cohesive law exhibits a monotonic envelope and loading-unloading hysteresis. The model is applicable whenever the changes in properties leading to fatigue are localized in one or more planar-like regions, modelled by the cohesive surfaces. We validate the model against experimental data for a simple test configuration consisting of an infinite slab acted upon by an oscillatory voltage differential across the slab and otherwise stress free. The model captures salient features of the experimental record including: the existence of a threshold nominal field for the onset of fatigue; the dependence of the threshold on the applied-field frequency; the dependence of fatigue life on the amplitude of the nominal field; and the dependence of the coercive field on the size of the component, or size effect. Our results, although not conclusive, indicate that planar-like regions affected by cycling may lead to the observed fatigue in tetragonal PZT. Peer Reviewed Postprint (author's final draft)

2 Bookmarks
 · 
110 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The conceptual simplicity and the ability of cohesive finite element models to describe complex fracture phenomena makes them often the approach of choice to study dynamic fracture. These models have proven to reproduce some experimental features, but to this point, no systematic study has validated their predictive ability; the difficulty in producing a sufficiently complete experimental record, and the intensive computational requirements needed to obtain converged simulations are possible causes. Here, we present a systematic integrated numerical–experimental approach to the verification and validation (V&V) of simulations of dynamic fracture along weak planes. We describe the intertwined computational and the experimental sides of the work, present the V&V results, and extract general conclusions about this kind of integrative approach. Peer Reviewed Postprint (author’s final draft)
    Computer Methods in Applied Mechanics and Engineering 01/2007; · 2.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present an extended finite element formulation for dynamic fracture of piezo-electric materials. The method is developed in the context of linear elastic fracture mechanics. It is applied to mode I and mixed mode-fracture for quasi-steady cracks. An implicit time integration scheme is exploited. The results are compared to results obtained with the boundary element method and show excellent agreement.
    Engineering Fracture Mechanics 09/2012; 92:19-31. · 1.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ferroelectric materials offer a variety of new applications in the field of smart structures and intelligent systems. Accordingly, the modelling of these materials constitutes an active field of research. A critical limitation of the performance of such materials is given when electrical, mechanical, or mixed loading fatigue occurs, combined with, for instance, microcracking phenomena. In this contribution, fatigue effects in ferroelectric materials are numerically investigated by utilisation of a cohesive-type approach. In view of finite element-based simulations, the geometry of a natural grain structure, as observed on the so-called meso-level, is represented by an appropriate mesh. While the response of the grains themselves is approximated by coupled continuum elements, grain boundaries are numerically incorporated via so-called cohesive-type or interface elements. These offer a great potential for numerical simulations: as an advantage, they do not result in bad-conditioned systems of equations as compared with the application of standard continuum elements inhering a very high ratio of length and height. The grain boundary behaviour is modelled by cohesive-type constitutive laws, designed to capture fatigue phenomena. Being a first attempt, switching effects are planned to be added to the grain model in the future. Two differently motivated fatigue evolution techniques are applied, the first being appropriate for low-cycle-fatigue, and a second one adequate to simulate high-cycle-fatigue. Subsequent to a demonstration of the theoretical and numerical framework, studies of benchmark boundary value problems with fatigue-motivated boundary conditions are presented.
    International Journal of Solids and Structures 01/2008; 45(17):4687-4708. · 2.04 Impact Factor

Full-text (6 Sources)

View
26 Downloads
Available from
May 27, 2014