Integrated miRNA and mRNA expression profiling of the inflammatory breast cancer subtype.

Translational Cancer Research Group (Laboratory of Pathology, University of Antwerp/University Hospital Antwerp, Oncology Centre, Sint-Augustinus), Oosterveldlaan 24, B-2610 Antwerp, Belgium.
British Journal of Cancer (Impact Factor: 5.08). 08/2010; 103(4):532-41. DOI: 10.1038/sj.bjc.6605787
Source: PubMed

ABSTRACT MicroRNAs (miRNAs) are key regulators of gene expression. In this study, we explored whether altered miRNA expression has a prominent role in defining the inflammatory breast cancer (IBC) phenotype.
We used quantitative PCR technology to evaluate the expression of 384 miRNAs in 20 IBC and 50 non-IBC samples. To gain understanding on the biological functions deregulated by aberrant miRNA expression, we looked for direct miRNA targets by performing pair-wise correlation coefficient analysis on expression levels of 10 962 messenger RNAs (mRNAs) and by comparing these results with predicted miRNA targets from TargetScan5.1.
We identified 13 miRNAs for which expression levels were able to correctly predict the nature of the sample analysed (IBC vs non-IBC). For these miRNAs, we detected a total of 17,295 correlated miRNA-mRNA pairs, of which 7012 and 10 283 pairs showed negative and positive correlations, respectively. For four miRNAs (miR-29a, miR-30b, miR-342-3p and miR-520a-5p), correlated genes were concordant with predicted targets. A gene set enrichment analysis on these genes demonstrated significant enrichment in biological processes related to cell proliferation and signal transduction.
This study represents, to the best of our knowledge, the first integrated analysis of miRNA and mRNA expression in IBC. We identified a set of 13 miRNAs of which expression differed between IBC and non-IBC, making these miRNAs candidate markers for the IBC subtype.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory breast cancer (IBC) is an extremely malignant form of breast cancer which can be easily misdiagnosed. Conclusive prognostic IBC molecular biomarkers which are also providing the perspectives for targeted therapy are lacking so far. The aim of this study was to reveal the IBC-specific miRNA expression profile and to evaluate its association with clinicopathological parameters. miRNA expression profiles of 13 IBC and 17 non-IBC patients were characterized using comprehensive Affymetrix GeneChip miRNA 3.0 microarray platform. Bioinformatic analysis was used to reveal IBC-specific miRNAs, deregulated pathways and potential miRNA targets. 31 differentially expressed miRNAs characterize IBC and mRNAs regulated by them and their associated pathways can functionally be attributed to IBC progression. In addition, a minimal predictive set of 4 miRNAs characteristic for the IBC phenotype and associated with the TP53 mutational status in breast cancer patients was identified. We have characterized the complete miRNome of inflammatory breast cancer and found differentially expressed miRNAs which reliably classify the patients to IBC and non-IBC groups. We found that the mRNAs and pathways likely regulated by these miRNAs are highly relevant to cancer progression. Furthermore a minimal IBC-related predictive set of 4 miRNAs associated with the TP53 mutational status and survival for breast cancer patients was identified.
    BMC Research Notes 12/2014; 7(1):871.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transfection of human oral squamous carcinoma cells (clone E10) with mimics for unexpressed miR-20b or miR-363-5p, encoded by the miR-106a-363 cluster (miR-20b, miR-106a, miR-363-3p, or miR-363-5p), caused 40-50% decrease in proliferation. Transfection with mimics for miR-18a or miR-92a, encoded by the miR-17-92 cluster (all members being expressed in E10 cells), had no effect on proliferation. In contrast, mimic for the sibling miRNA-19a yielded about 20% inhibition of proliferation. To investigate miRNA involvement profiling of miRNA transcriptomes were carried out using deoxyoligonucleotide microarrays. In transfectants for miR-19a, or miR-20b or miR-363-5p most differentially expressed miRNAs exhibited decreased expression, including some miRNAs encoded in paralogous miR-17-92-or miR-106b-25 cluster. Only in cells transfected with miR-19a mimic significantly increased expression of miR-20b observed-about 50-fold as judged by qRT-PCR. Further studies using qRT-PCR showed that transfection of E10 cells with mimic for miRNAs encoded by miR-17-92 - or miR-106a-363 - or the miR-106b-25 cluster confirmed selective effect on expression on sibling miRNAs. We conclude that high levels of miRNAs encoded by the miR-106a-363 cluster may contribute to inhibition of proliferation by decreasing expression of several sibling miRNAs encoded by miR-17-92 or by the miR-106b-25 cluster. The inhibition of proliferation observed in miR-19a-mimic transfectants is likely caused by the miR-19a-dependent increase in the levels of miR-20b and miR-106a. Bioinformatic analysis of differentially expressed miRNAs from miR-106a, miR-20b and miR-363-5p transfectants, but not miR-92a transfectants, yielded significant associations to "Cellular Growth and Proliferation" and "Cell Cycle." Western blotting results showed that levels of affected proteins to differ between transfectants, suggesting that different anti-proliferative mechanisms may operate in these transfectants.
    Frontiers in Genetics 08/2014; 5:246.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Type 2 diabetes (T2DM) is a complex multifactorial metabolic disorder that affects >100 million individuals worldwide, yet the mechanisms involved in the development and progression of the disease have not yet been fully elucidated. The present study examined the mRNA and micro (mi)RNA expression profiles by microarray analysis in the pancreas islets of spontaneously diabetic Goto‑Kakizaki rats with the aim to identify regulatory mechanisms underlying the pathogenesis of T2DM. A total of 9 upregulated and 10 downregulated miRNAs were identified, including miR‑150, miR‑497, miR‑344‑3p and let‑7f, which were independently validated by quantitative polymerase chain reaction assays. In addition, differential expression of 670 genes was detected by mRNA microarray analysis, including 370 upregulated and 247 downregulated genes. The differentially expressed genes were statistically associated with major cellular pathways, including the immune response pathway and the extracellular matrix (ECM)‑receptor interaction pathway. Finally, a reverse regulatory association of differentially expressed miRNAs and their predicted target genes was constructed, supported by analysis of their mRNA and miRNA expression profiles. A number of key pairs of miRNA‑mRNA was proposed to have significant roles in the pathogenesis of T2DM rats based on bioinformatics analysis, one example being the let‑7f/collagen, type II, alpha 1 pair that may regulate ECM‑receptor interactions.
    Molecular Medicine Reports 10/2014; · 1.48 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014