Article

Muscle KATP channels: recent insights to energy sensing and myoprotection.

Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
Physiological Reviews (Impact Factor: 29.04). 07/2010; 90(3):799-829. DOI: 10.1152/physrev.00027.2009
Source: PubMed

ABSTRACT ATP-sensitive potassium (K(ATP)) channels are present in the surface and internal membranes of cardiac, skeletal, and smooth muscle cells and provide a unique feedback between muscle cell metabolism and electrical activity. In so doing, they can play an important role in the control of contractility, particularly when cellular energetics are compromised, protecting the tissue against calcium overload and fiber damage, but the cost of this protection may be enhanced arrhythmic activity. Generated as complexes of Kir6.1 or Kir6.2 pore-forming subunits with regulatory sulfonylurea receptor subunits, SUR1 or SUR2, the differential assembly of K(ATP) channels in different tissues gives rise to tissue-specific physiological and pharmacological regulation, and hence to the tissue-specific pharmacological control of contractility. The last 10 years have provided insights into the regulation and role of muscle K(ATP) channels, in large part driven by studies of mice in which the protein determinants of channel activity have been deleted or modified. As yet, few human diseases have been correlated with altered muscle K(ATP) activity, but genetically modified animals give important insights to likely pathological roles of aberrant channel activity in different muscle types.

Download full-text

Full-text

Available from: Thomas P Flagg, Aug 13, 2014
1 Follower
 · 
101 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ATP-sensitive potassium (KATP ) channels, composed of inward-rectifying potassium channel subunits (Kir6.1 and Kir6.2, encoded by KCNJ8 and KCNJ11, respectively) and regulatory sulfonylurea receptor (SUR1 and SUR2, encoded by ABCC8 and ABCC9, respectively), couple metabolism to excitability in multiple tissues. Mutations in ABCC9 cause Cantú syndrome, a distinct multi-organ disease, potentially via enhanced KATP channel activity. We screened KCNJ8 in an ABCC9 mutation-negative patient who also exhibited clinical hallmarks of Cantú syndrome (hypertrichosis, macrosomia, macrocephaly, coarse facial appearance, cardiomegaly, and skeletal abnormalities). We identified a de novo missense mutation encoding Kir6.1[p.Cys176Ser] in the patient. Kir6.1[p.Cys176Ser] channels exhibited markedly higher activity than wild-type channels, as a result of reduced ATP sensitivity, whether co-expressed with SUR1 or SUR2A subunits. Our results identify a novel causal gene in Cantú syndrome, but also demonstrate that the cardinal features of the disease result from gain of KATP channel function, not from Kir6-independent SUR2 function. This article is protected by copyright. All rights reserved.
    Human Mutation 07/2014; 35(7). DOI:10.1002/humu.22555 · 5.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cantu syndrome is an autosomal dominant overgrowth syndrome associated with facial dysmorphism, congenital hypertrichosis, and cardiomegaly. Some affected individuals show bone undermodeling of variable severity. Recent investigations revealed that the disorder is caused by a mutation in ABCC9, encoding a regulatory SUR2 subunit of an ATP-sensitive potassium channel mainly expressed in cardiac and skeletal muscle as well as vascular smooth muscle. We report here on a Japanese family with this syndrome. An affected boy and his father had a novel missense mutation in ABCC9. Each patient had a coarse face and hypertrichosis. However, cardiomegaly was seen only in the boy, and macrosomia only in the father. Skeletal changes were not evident in either patient. Craniosynostosis in the boy and the development of aortic aneurysm in the father are previously undescribed associations with Cantu syndrome. © 2013 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part A 01/2014; 164(1):231-6. DOI:10.1002/ajmg.a.36228 · 2.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Alterations in coronary vasomotor tone may participate in the pathogenesis of acute myocardial infarction (AMI). Vascular ATP-sensitive K(+) (KATP) channels, formed by Kir6.x/SUR2B, are key regulators of coronary tone and mutations in cardiac (Kir6.2/SUR2A) KATP channels result in heart disease. Here we explore the pathophysiological mechanism of a rare mutation (V734I) found in exon 17 of the ABCC9 gene, estimated to cause a 6.4-fold higher risk of AMI before the age of 60. METHODS AND RESULTS: Eleven patients carrying the mutation were identified; they presented AMI of vasospastic origin associated with increased plasma levels of endothelin-1 and increased leukocyte ROCK activity. The effects of the mutation on the functional properties of the two splice variants of ABCC9 (SUR2A and SUR2B) were studied using patch-clamp electrophysiology. The mutation reduced the sensitivity to MgATP inhibition of Kir6.2/SUR2B channels but not of Kir6.2/SUR2A and Kir6.1/SUR2B channels. Furthermore, the stimulatory effects of MgNDP (MgADP, MgGDP and MgUDP) were unaltered in mutant Kir6.2/SUR2A and Kir6.1/SUR2B channels. In contrast, mutant channels composed of Kir6.2 and SUR2B were less sensitive to MgNDP activation, assessed in the presence of MgATP. The antianginal drug nicorandil activated Kir6.2/SUR2B-V734I channels, thus substituting for the loss of MgNDP stimulation, suggesting that this drug could be of therapeutic use in the treatment of AMI associated with V734I. CONCLUSIONS: The 734I allele in ABCC9 may influence susceptibility to AMI by impairing the response of vascular, but not cardiac, KATP channels to intracellular nucleotides. This is the first human mutation in an ion channel gene to be implicated in AMI.
    International journal of cardiology 06/2013; 168(4). DOI:10.1016/j.ijcard.2013.04.210 · 6.18 Impact Factor