Article

A genome-wide scan for common alleles affecting risk for autism

Department of Psychiatry, School of Medicine, Trinity College, Dublin 8, Ireland.
Human Molecular Genetics (Impact Factor: 6.68). 10/2010; 19(20):4072-82. DOI: 10.1093/hmg/ddq307
Source: PubMed

ABSTRACT Although autism spectrum disorders (ASDs) have a substantial genetic basis, most of the known genetic risk has been traced to rare variants, principally copy number variants (CNVs). To identify common risk variation, the Autism Genome Project (AGP) Consortium genotyped 1558 rigorously defined ASD families for 1 million single-nucleotide polymorphisms (SNPs) and analyzed these SNP genotypes for association with ASD. In one of four primary association analyses, the association signal for marker rs4141463, located within MACROD2, crossed the genome-wide association significance threshold of P < 5 × 10(-8). When a smaller replication sample was analyzed, the risk allele at rs4141463 was again over-transmitted; yet, consistent with the winner's curse, its effect size in the replication sample was much smaller; and, for the combined samples, the association signal barely fell below the P < 5 × 10(-8) threshold. Exploratory analyses of phenotypic subtypes yielded no significant associations after correction for multiple testing. They did, however, yield strong signals within several genes, KIAA0564, PLD5, POU6F2, ST8SIA2 and TAF1C.

2 Followers
 · 
366 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorders (ASDs) are more prevalent in males, suggesting a multiple threshold liability model in which females are, on average, protected by sex-differential mechanisms. Under this model, autistic females are predicted to carry a more penetrant risk variant load than males and to share this greater genetic liability with their siblings. However, reported ASD recurrence rates have not demonstrated significantly increased risk to siblings of affected girls. Here, we characterize recurrence patterns in multiplex families from the Autism Genetics Resource Exchange (AGRE) to determine if risk in these families follows a female protective model. We assess recurrence rates and quantitative traits in full siblings from 1,120 multiplex nuclear families and concordance rates in 305 twin pairs from AGRE. We consider the first two affected children per family, and one randomly selected autistic twin per pair, as probands. We then compare recurrence rates and phenotypes between males and females and between twin pairs or families with at least one female proband (female-containing (FC)) versus those with only male probands (male-only (MO)). Among children born after two probands, we observe significantly higher recurrence in males (47.5%) than in females (21.1%; relative risk, RR = 2.25; adjusted P = 6.22e-08) and in siblings of female (44.3%) versus siblings of male probands (30.4%; RR = 1.46; adj. P = 0.036). This sex-differential recurrence is also robust in dizygotic twin pairs (males = 61.5%, females = 19.1%; RR = 3.23; adj. P = 7.66e-09). Additionally, we find a significant negative relationship between interbirth interval and ASD recurrence that is driven by children in MO families. By classifying families as MO or FC using two probands instead of one, we observe significant recurrence rate differences between families harboring sex-differential familial liability. However, a significant sex difference in risk to children within FC families suggests that female protective mechanisms are still operative in families carrying high genetic risk loads. Furthermore, the male-specific relationship between shorter interbirth intervals and increased ASD risk is consistent with a potentially greater contribution from environmental factors in males versus higher genetic risk in affected females and their families. Understanding the mechanisms driving these sex-differential risk profiles will be useful for treatment development and prevention.
    Molecular Autism 05/2015; 6(27). DOI:10.1186/s13229-015-0004-5 · 5.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic generalised epilepsy (GGE) is the most common form of genetic epilepsy, accounting for 20% of all epilepsies. Genomic copy number variations (CNVs) constitute important genetic risk factors of common GGE syndromes. In our present genome-wide burden analysis, large (≥ 400 kb) and rare (< 1%) autosomal microdeletions with high calling confidence (≥ 200 markers) were assessed by the Affymetrix SNP 6.0 array in European case-control cohorts of 1,366 GGE patients and 5,234 ancestry-matched controls. We aimed to: 1) assess the microdeletion burden in common GGE syndromes, 2) estimate the relative contribution of recurrent microdeletions at genomic rearrangement hotspots and non-recurrent microdeletions, and 3) identify potential candidate genes for GGE. We found a significant excess of microdeletions in 7.3% of GGE patients compared to 4.0% in controls (P = 1.8 x 10-7; OR = 1.9). Recurrent microdeletions at seven known genomic hotspots accounted for 36.9% of all microdeletions identified in the GGE cohort and showed a 7.5-fold increased burden (P = 2.6 x 10-17) relative to controls. Microdeletions affecting either a gene previously implicated in neurodevelopmental disorders (P = 8.0 x 10-18, OR = 4.6) or an evolutionarily conserved brain-expressed gene related to autism spectrum disorder (P = 1.3 x 10-12, OR = 4.1) were significantly enriched in the GGE patients. Microdeletions found only in GGE patients harboured a high proportion of genes previously associated with epilepsy and neuropsychiatric disorders (NRXN1, RBFOX1, PCDH7, KCNA2, EPM2A, RORB, PLCB1). Our results demonstrate that the significantly increased burden of large and rare microdeletions in GGE patients is largely confined to recurrent hotspot microdeletions and microdeletions affecting neurodevelopmental genes, suggesting a strong impact of fundamental neurodevelopmental processes in the pathogenesis of common GGE syndromes.
    PLoS Genetics 05/2015; 11(5):e1005226. DOI:10.1371/journal.pgen.1005226 · 8.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders with high heritability. Recent findings support a highly heterogeneous and complex genetic etiology including rare de novo and inherited mutations or chromosomal rearrangements as well as double or multiple hits. We performed whole-exome sequencing (WES) and blood cell transcriptome by RNAseq in a subset of male patients with idiopathic ASD (n = 36) in order to identify causative genes, transcriptomic alterations, and susceptibility variants. We detected likely monogenic causes in seven cases: five de novo (SCN2A, MED13L, KCNV1, CUL3, and PTEN) and two inherited X-linked variants (MAOA and CDKL5). Transcriptomic analyses allowed the identification of intronic causative mutations missed by the usual filtering of WES and revealed functional consequences of some rare mutations. These included aberrant transcripts (PTEN, POLR3C), deregulated expression in 1.7% of mutated genes (that is, SEMA6B, MECP2, ANK3, CREBBP), allele-specific expression (FUS, MTOR, TAF1C), and non-sense-mediated decay (RIT1, ALG9). The analysis of rare inherited variants showed enrichment in relevant pathways such as the PI3K-Akt signaling and the axon guidance. Integrative analysis of WES and blood RNAseq data has proven to be an efficient strategy to identify likely monogenic forms of ASD (19% in our cohort), as well as additional rare inherited mutations that can contribute to ASD risk in a multifactorial manner. Blood transcriptomic data, besides validating 88% of expressed variants, allowed the identification of missed intronic mutations and revealed functional correlations of genetic variants, including changes in splicing, expression levels, and allelic expression.
    Molecular Autism 12/2015; 6(1). DOI:10.1186/s13229-015-0017-0 · 5.49 Impact Factor

Full-text (4 Sources)

Download
96 Downloads
Available from
May 22, 2014