Article

Nanoscale Morphology, Dimensional Control, and Electrical Properties of Oligoanilines

Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, California, 90095-1969, USA.
Journal of the American Chemical Society (Impact Factor: 11.44). 08/2010; 132(30):10365-73. DOI: 10.1021/ja1014184
Source: PubMed

ABSTRACT While nanostructures of organic conductors have generated great interest in recent years, their nanoscale size and shape control remains a significant challenge. Here, we report a general method for producing a variety of oligoaniline nanostructures with well-defined morphologies and dimensionalities. 1-D nanowires, 2-D nanoribbons, and 3-D rectangular nanoplates and nanoflowers of tetraaniline are produced by a solvent exchange process in which the dopant acid can be used to tune the oligomer morphology. The process appears to be a general route for producing nanostructures for a variety of other aniline oligomers such as the phenyl-capped tetramer. X-ray diffraction of the tetraniline nanostructures reveals that they possess different packing arrangements, which results in different nanoscale morphologies with different electrical properties for the structures. The conductivity of a single tetraaniline nanostructure is up to 2 orders of magnitude higher than the highest previously reported value and rivals that of pressed pellets of conventional polyaniline doped with acid. Furthermore, these oligomer nanostructures can be easily processed by a number of methods in order to create thin films composed of aligned nanostructures over a macroscopic area.

Download full-text

Full-text

Available from: Xiangfeng Duan, Aug 28, 2015
0 Followers
 · 
112 Views
  • Source
    • "In recent decades a great deal of research effort has focused on the development of new organic materials for both optical and electronic applications [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Intrinsically conductive polymers (ICPs) have attracted significant attention in recent decades because of their wide range of potential applications in various fields such as chemistry, physics, electronics, optics, materials, and biomedical sciences. In particular, conjugated polythiophene (PTh) and its derivatives stand out as the most promising members of the conjugated polymer family because of their unique electrical behavior, excellent environmental and thermal stability, low-cost synthesis, and mechanical strength. However, similar to other π-conjugated polymers the main drawback of unsubstituted PTh is the lack of solubility due to its strong interchain interactions, resulting in limited processability. Various procedures have been invoked to overcome these restrictions, such as side chain functionalization, the synthesis of PTh copolymers with processable polymers, and combination of both of these strategies. Because of large number of publications on the chemical modification of polythiophene, this review is focused on progress in the synthesis of polythiophene copolymers with processable polymers. The properties of the polythiophene copolymers and their applications are also highlighted.
    Progress in Polymer Science 03/2015; DOI:10.1016/j.progpolymsci.2014.11.004 · 26.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: By dissolving branched or linear aniline oligomers in polar solvent and introducing their stock solution into an aqueous acidic medium, sheet-like as well as wire-like supramolecular structures with well-defined morphology were obtained, respectively. These oligomeric supramolecular structures were constructed via a post-synthetic precipitation process, indicating that aniline oligomers are capable of self-assembling in an aqueous medium, which is similar to the reaction medium of aniline chemical polymerization. Possible formation mechanisms of these supramolecular structures were proposed, i.e., sheet-like products were probably constructed by collapsed molecular chains of aniline oligomers with branched units through π–π stacking and hydrogen bonding, whereas formation of the wire-like products was attributed to “oriented-attachment” of collapsed molecular chains of linear aniline oligomers. The findings obtained in this study are supposed to provide useful clues for uncovering the formation mechanism of polyaniline micro-/nanostructures.
    Colloid and Polymer Science 06/2012; 290(9). DOI:10.1007/s00396-012-2597-y · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aniline chemical oxidative polymerisation (COP), which produces various polyaniline (PANI) and oligoaniline supra-molecular structures, can be regarded as an in situ self-assembly process. This review provides a brief introduction to recent work on the structural characters and self-assembly behaviours of oligomeric aniline chemical oxidation products; it is focused on the relationships between the oligomeric species and morphology of the final products such as PANI nanoparticles, nanofibres/rods, nanotubes or oligoaniline nanosheets, micro/nanospheres in aniline COP systems. Several mechanisms proposed as explanations for the formation of typical supra-molecular structures are discussed in order to illustrate the roles of aniline oligomers. This article concludes with our perspectives on future work remaining to be done to uncover the formation mechanism of supra-molecular structures constructed by aniline chemical oxidation products and their controllable synthesis.
    Chemical Papers- Slovak Academy of Sciences 08/2013; 67(8). DOI:10.2478/s11696-013-0376-y · 1.19 Impact Factor
Show more