Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease

Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 08/2010; 107(32):14164-9. DOI: 10.1073/pnas.1009485107
Source: PubMed

ABSTRACT Dysregulation of autophagy, a cellular catabolic mechanism essential for degradation of misfolded proteins, has been implicated in multiple neurodegenerative diseases. However, the mechanisms that lead to the autophagy dysfunction are still not clear. Based on the results of a genome-wide screen, we show that reactive oxygen species (ROS) serve as common mediators upstream of the activation of the type III PI3 kinase, which is critical for the initiation of autophagy. Furthermore, ROS play an essential function in the induction of the type III PI3 kinase and autophagy in response to amyloid beta peptide, the main pathogenic mediator of Alzheimer's disease (AD). However, lysosomal blockage also caused by Abeta is independent of ROS. In addition, we demonstrate that autophagy is transcriptionally down-regulated during normal aging in the human brain. Strikingly, in contrast to normal aging, we observe transcriptional up-regulation of autophagy in the brains of AD patients, suggesting that there might be a compensatory regulation of autophagy. Interestingly, we show that an AD drug and an AD drug candidate have inhibitory effects on autophagy, raising the possibility that decreasing input into the lysosomal system may help to reduce cellular stress in AD. Finally, we provide a list of candidate drug targets that can be used to safely modulate levels of autophagy without causing cell death.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is an essential homeostatic process for degrading cellular cargo. Aging organelles and protein aggregates are degraded by the autophagosome-lysosome pathway, which is particularly crucial in neurons. There is increasing evidence implicating defective autophagy in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease and Huntington's disease. Recent work using live-cell imaging has identified autophagy as a predominantly polarized process in neuronal axons; autophagosomes preferentially form at the axon tip and undergo retrograde transport back towards the cell body. Autophagosomes engulf cargo including damaged mitochondria (mitophagy) and protein aggregates, and subsequently fuse with lysosomes during axonal transport to effectively degrade their internalized cargo. In this Cell Science at a Glance article and the accompanying poster, we review recent progress on the dynamics of the autophagy pathway in neurons and highlight the defects observed at each step of this pathway during neurodegeneration. © 2015. Published by The Company of Biologists Ltd.
    Journal of Cell Science 04/2015; 128(7):1259-1267. DOI:10.1242/jcs.161216 · 5.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcriptomic studies hold great potential towards understanding the human aging process. Previous transcriptomic studies have identified many genes with age-associated expression levels; however, small samples sizes and mixed cell types often make these results difficult to interpret. Using transcriptomic profiles in CD14+ monocytes from 1,264 participants of the Multi-Ethnic Study of Atherosclerosis (aged 55-94 years), we identified 2,704 genes differentially expressed with chronological age (false discovery rate, FDR ≤ 0.001). We further identified six networks of co-expressed genes that included prominent genes from three pathways: protein synthesis (particularly mitochondrial ribosomal genes), oxidative phosphorylation, and autophagy, with expression patterns suggesting these pathways decline with age. Expression of several chromatin remodeler and transcriptional modifier genes strongly correlated with expression of oxidative phosphorylation and ribosomal protein synthesis genes. 17% of genes with age-associated expression harbored CpG sites whose degree of methylation significantly mediated the relationship between age and gene expression (p < 0.05). Lastly, 15 genes with age-associated expression were also associated (FDR ≤ 0.01) with pulse pressure independent of chronological age. Comparing transcriptomic profiles of CD14+ monocytes to CD4+ T cells from a subset (n = 423) of the population, we identified 30 age-associated (FDR < 0.01) genes in common, while larger sets of differentially expressed genes were unique to either T cells (188 genes) or monocytes (383 genes). At the pathway level, a decline in ribosomal protein synthesis machinery gene expression with age was detectable in both cell types. An overall decline in expression of ribosomal protein synthesis genes with age was detected in CD14+ monocytes and CD4+ T cells, demonstrating that some patterns of aging are likely shared between different cell types. Our findings also support cell-specific effects of age on gene expression, illustrating the importance of using purified cell samples for future transcriptomic studies. Longitudinal work is required to establish the relationship between identified age-associated genes/pathways and aging-related diseases.
    BMC Genomics 04/2015; 16:333. DOI:10.1186/s12864-015-1522-4 · 4.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a critical quality control pathway that is conserved across diverse systems ranging from simple unicellular organisms like yeast to more complex systems, for instance mammals. Although, the fundamental role of autophagy is to maintain cellular quality control through lysosomal degradation of unwanted proteins and organelles, recent studies have mapped several new functions of this pathway that range from fuel utilization, cellular differentiation to protection against cell death. Given the importance of this pathway in maintaining cellular homeostasis, it has been considered that compromised autophagy could contribute to several of the commonly observed age-associated pathologies including neurodegeneration, reduction of muscle mass, cardiac malfunction, excessive lipid accumulation in tissues and glucose intolerance. The present chapter describes the two best-characterized autophagy pathways—macroautophagy and chaperone-mediated autophagy, and discusses how changes in these pathways associate with age-associated disorders. Understanding how to maintain “clean cells” by activation of autophagy could be an attractive strategy to maintain healthspan in aged individuals.
    Advances in Experimental Medicine and Biology 04/2015; 847:73-87. DOI:10.1007/978-1-4939-2404-2_3. · 2.01 Impact Factor

Full-text (2 Sources)

Available from
May 30, 2014