Cocarcinogenic Effect of Capsaicin Involves Activation of EGFR Signaling but Not TRPV1

Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea.
Cancer Research (Impact Factor: 9.28). 09/2010; 70(17):6859-69. DOI: 10.1158/0008-5472.CAN-09-4393
Source: PubMed

ABSTRACT Epidemiologic and animal studies revealed that capsaicin can act as a carcinogen or cocarcinogen. However, the molecular mechanisms of the cancer-promoting effects of capsaicin are not clear. Here, we report that capsaicin has a cocarcinogenic effect on 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted skin carcinogenesis in vivo and is mediated through the epidermal growth factor receptor (EGFR), but not the transient receptor potential vanilloid subfamily member 1 (TRPV1). Topical application of capsaicin on the dorsal skin of 7,12-dimetylbenz(a)anthracene-initiated and TPA-promoted TRPV1 wild-type (WT) and TRPV1 knockout (KO) mice induced more and larger skin tumors in TRPV1/KO mice, suggesting a TRPV1-independent mechanism. Cyclooxygenase-2 (COX-2) was highly elevated by capsaicin treatment in tumors and murine embryonic fibroblasts from TRPV1/KO mice. Inhibitors of EGFR/MEK signaling suppressed TPA/capsaicin-induced COX-2 expression in TRPV1/KO cells, indicating that activation of EGFR and its downstream signaling is involved in COX-2 elevation. Capsaicin induced a further induction of TPA-increased COX-2 expression in EGFR/WT cells, but not in EGFR/KO cells. TPA/capsaicin cotreatment caused EGFR tyrosine phosphorylation and activated EGFR downstream signaling, including ERKs and Akt in EGFR/WT, but not EGFR/KO cells. Specific inhibition of EGFR and TRPV1 indicated that capsaicin-induced ERK activation in A431 cells was dependent on EGFR, but not TRPV1. Together, these findings suggest that capsaicin might act as a cocarcinogen in TPA-induced skin carcinogenesis through EGFR-dependent mechanisms.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SCOPE: Plant secondary metabolites, such as phenolic acids are commonly associated with benefits for human health. Two of the most abundant phenylpropanoid-derived compounds detected in human faecal samples are phenylacetic acid (PAA) and 4-hydroxylphenylacetic acid (4-hydroxyPAA). Although they have the potential to be derived from diets rich in plant-based foods, evidence suggests that these compounds can be derived from the microbial fermentation of aromatic amino acids (AAAs) in the colon. METHODS AND RESULTS: To identify the bacteria responsible, 26 strains representing 25 of the dominant human colonic species were screened for phenyl metabolite formation. Seven strains produced significant amounts of both PAA and 4-hydroxyPAA. These included five out of seven Bacteroidetes (Bacteroides thetaiotaomicron, Bacteroides eggerthii, Bacteroides ovatus, Bacteroides fragilis, Parabacteroides distasonis), and two out of 17 Firmicutes (Eubacterium hallii and Clostridium bartlettii). These species also produced indole-3-acetic acid (IAA), the corresponding tryptophan metabolite, but C. bartlettii showed 100 times higher IAA production than the other six strains. Four strains were further tested and PAA formation was substantially increased by phenylalanine, 4-hydroxyPAA by tyrosine and IAA by tryptophan. CONCLUSION: This study demonstrates that certain microbial species have the ability to ferment all three AAAs and that protein fermentation is the likely source of major phenylpropanoid-derived metabolites in the colon.
    Molecular Nutrition & Food Research 03/2013; 57(3). DOI:10.1002/mnfr.201200594
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human exposure to capsaicin, the most abundant pungent chili pepper component, is ubiquitous. Evaluation of capsaicin's carcinogenic potential has produced variable results in in vitro and in vivo genotoxicity and carcinogenicity assays. The capsaicin tested in older studies was often from pepper plant extracts and included other capsaicinoids and diverse impurities. Recent studies utilizing high-purity capsaicin and standardized protocols provide evidence that the genotoxic and carcinogenic potential of capsaicin is quite low and that the purity of capsaicin is important. Several small epidemiological studies suggest a link between capsaicin consumption and stomach or gall bladder cancer, but contamination of capsaicin-containing foods with known carcinogens renders their interpretation problematic. The postulated ability of capsaicin metabolites to damage DNA and promote carcinogenesis remains unsupported. Anticancer activities of capsaicin have been widely reported, as it inhibits the activity of carcinogens and induces apoptosis in numerous cancer cell lines in vitro and explanted into rodents. Diverse mechanisms have been postulated for capsaicin's anticancer properties. One hypothesis is that inhibition of cytochrome P450 enzymes-particularly CYP2E1-retards carcinogen activation but is contradicted by the low potency of capsaicin for CYP inhibition. The potential for dietary capsaicin to act as a chemopreventative is now widely postulated.
    Toxicologic Pathology 05/2012; 40(6):847-73. DOI:10.1177/0192623312444471
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The progression of normal cells to a tumorigenic and metastatic state involves the accumulation of mutations in multiple key signaling proteins, encoded by oncogenes and tumor suppressor genes. Recently, members of the TRP channel family have been included in the oncogenic and tumor suppressor protein family. TRPM1, TRPM8, and TRPV6 are considered to be tumor suppressors and oncogenes in localized melanoma and prostate cancer, respectively. Herein, we focus our attention on the antioncogenic properties of TRPV1. Changes in TRPV1 expression occur during the development of transitional cell carcinoma (TCC) of human bladder. A progressive decrease in TRPV1 expression as the TCC stage increases triggers the development of a more aggressive gene phenotype and invasiveness. Finally, downregulation of TRPV1 represents a negative prognostic factor in TCC patients. The knowledge of the mechanism controlling TRPV1 expression might improve the diagnosis and new therapeutic strategies in bladder cancer.
    02/2012; 2012:458238. DOI:10.5402/2012/458238