TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo

Department of Immunology, Howard Hughes Medical Institute, New York, NY 10021, USA.
Journal of Experimental Medicine (Impact Factor: 13.91). 08/2010; 207(8):1701-11. DOI: 10.1084/jem.20091999
Source: PubMed

ABSTRACT T cell receptor (TCR) ligation is required for the extrathymic differentiation of forkhead box p3(+) (Foxp3(+)) regulatory T cells. Several lines of evidence indicate that weak TCR stimulation favors induction of Foxp3 in the periphery; however, it remains to be determined how TCR ligand potency influences this process. We characterized the density and affinity of TCR ligand favorable for Foxp3 induction and found that a low dose of a strong agonist resulted in maximal induction of Foxp3 in vivo. Initial Foxp3 induction by weak agonist peptide could be enhanced by disruption of TCR-peptide major histocompatibility complex (pMHC) interactions or alteration of peptide dose. However, time course experiments revealed that Foxp3-positive cells induced by weak agonist stimulation are deleted, along with their Foxp3-negative counterparts, whereas Foxp3-positive cells induced by low doses of the strong agonist persist. Our results suggest that, together, pMHC ligand potency, density, and duration of TCR interactions define a cumulative quantity of TCR stimulation that determines initial peripheral Foxp3 induction. However, in the persistence of induced Foxp3(+) T cells, TCR ligand potency and density are noninterchangeable factors that influence the route to peripheral tolerance.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The tolerogenic anti-CD3ε monoclonal Abs (anti-CD3) are promising compounds for the treatment of type 1 diabetes. Anti-CD3 administration induces transient T cell depletion both in preclinical and in clinical studies. Notably, the said depletion mainly affects CD4(+) but not CD8(+) T cells. Moreover, type 1 diabetes reversal in preclinical models is accompanied by the selective expansion of CD4(+)Foxp3(+) T regulatory (Treg) cells, which are fundamental for the long-term maintenance of anti-CD3-mediated tolerance. The mechanisms that lead to this immune-shaping by affecting mainly CD4(+) T effector cells while sparing CD4(+)Foxp3(+) Treg cells have still to be fully elucidated. This study shows that CD3 expression levels differ from one T cell subset to another. CD4(+)Foxp3(-) T cells contain higher amounts of CD3 molecules than do CD4(+)Foxp3(+) and CD8(+) T cells in both mice and humans. The said differences correlate with the anti-CD3-mediated immune resetting that occurs in vivo after anti-CD3 administration in diabetic NOD mice. Additionally, transcriptome analysis demonstrates that CD4(+)Foxp3(+) Treg cells are significantly less responsive than are CD4(+)Foxp3(-) T cells to anti-CD3 treatment at a molecular level. Thus, heterogeneity in CD3 expression seems to confer to the various T cell subsets differing susceptibility to the in vivo tolerogenic anti-CD3-mediated modulation. These data shed new light on the molecular mechanism that underlies anti-CD3-mediated immune resetting and thus may open new opportunities to improve this promising treatment. Copyright © 2015 by The American Association of Immunologists, Inc.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Central tolerance plays a key role in modulating immune responses to self and exogenous antigens. The absence of self-antigen expression, as in patients with genetic deficiencies, prevents the development of antigen-specific immune tolerance. Hence, a substantial number of patients develop neutralizing antibodies to the corresponding protein therapeutics after replacement treatment. In this context, the administration of missing antigens during fetal development, a key period for self-tolerance establishment, should confer early and long-lasting antigen-specific tolerance. To this end, we exploited the physiological pathway of the neonatal Fc receptor (FcRn) through which maternal immunoglobulins are transplacentally transferred to fetuses. We demonstrate that Fc-fused antigens administered to pregnant mice reach fetal lymphoid organs in an FcRn-dependent manner, accumulate in antigen-presenting cells of myeloid origin, and promote the generation of both thymic and peripheral antigen-specific regulatory T cells. This strategy was successfully pursued in a mouse model of hemophilia A, where maternofetal transfer of the Fc-fused immunodominant domains of coagulation factor VIII conferred antigen-specific tolerance. Transplacental tolerance induction with Fc-fused proteins may thus prove valuable to prevent alloimmunization after replacement protein therapy for congenital deficiencies. Copyright © 2015, American Association for the Advancement of Science.
    Science translational medicine 02/2015; 7(275):275ra21. DOI:10.1126/scitranslmed.aaa1957 · 14.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: T cell development, differentiation, and maintenance are orchestrated by 2 key signaling axes: the antigen-specific TCR and cytokine-mediated signals. The TCR signals the recognition of self- and foreign antigens to control T cell homeostasis for immune tolerance and immunity, which is regulated by a variety of cytokines to determine T cell subset homeostasis and differentiation. TCR signaling can synergize with or antagonize cytokine-mediated signaling to fine tune T cell fate; however, the latter is less investigated. Murine models with attenuated TCR signaling strength have revealed that TCR signaling can function as regulatory feedback machinery for T cell homeostasis and differentiation in differential cytokine milieus, such as IL-2-mediated Treg development; IL-7-mediated, naïve CD8(+) T cell homeostasis; and IL-4-induced innate memory CD8(+) T cell development. In this review, we discuss the symphonic cross-talk between TCR and cytokine-mediated responses that differentially control T cell behavior, with a focus on the negative tuning by TCR activation on the cytokine effects. © Society for Leukocyte Biology.
    Journal of Leukocyte Biology 03/2015; 97(3):477-485. DOI:10.1189/jlb.1RI0614-293R · 4.30 Impact Factor

Preview (2 Sources)

Available from