The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis.

Clinical Neuroscience, St George's University of London, London.
BMJ (online) (Impact Factor: 16.38). 07/2010; 341:c3666. DOI: 10.1136/bmj.c3666
Source: PubMed

ABSTRACT To review the evidence for an association of white matter hyperintensities with risk of stroke, cognitive decline, dementia, and death.
Systematic review and meta-analysis.
PubMed from 1966 to 23 November 2009.
Prospective longitudinal studies that used magnetic resonance imaging and assessed the impact of white matter hyperintensities on risk of incident stroke, cognitive decline, dementia, and death, and, for the meta-analysis, studies that provided risk estimates for a categorical measure of white matter hyperintensities, assessing the impact of these lesions on risk of stroke, dementia, and death.
Population studied, duration of follow-up, method used to measure white matter hyperintensities, definition of the outcome, and measure of the association of white matter hyperintensities with the outcome.
46 longitudinal studies evaluated the association of white matter hyperintensities with risk of stroke (n=12), cognitive decline (n=19), dementia (n=17), and death (n=10). 22 studies could be included in a meta-analysis (nine of stroke, nine of dementia, eight of death). White matter hyperintensities were associated with an increased risk of stroke (hazard ratio 3.3, 95% confidence interval 2.6 to 4.4), dementia (1.9, 1.3 to 2.8), and death (2.0, 1.6 to 2.7). An association of white matter hyperintensities with a faster decline in global cognitive performance, executive function, and processing speed was also suggested.
White matter hyperintensities predict an increased risk of stroke, dementia, and death. Therefore white matter hyperintensities indicate an increased risk of cerebrovascular events when identified as part of diagnostic investigations, and support their use as an intermediate marker in a research setting. Their discovery should prompt detailed screening for risk factors of stroke and dementia.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: -The burden of cerebral white matter hyperintensities (WMH) is associated with an increased risk of stroke, dementia, and death. WMH are highly heritable, but their genetic underpinnings are incompletely characterized. To identify novel genetic variants influencing WMH burden, we conducted a meta-analysis of multi-ethnic genome-wide association studies. -We included 21,079 middle-aged to elderly individuals from 29 population-based cohorts, who were free of dementia and stroke and were of European (N=17,936), African (N=1,943), Hispanic (N=795), and Asian (N=405) descent. WMH burden was quantified on MRI either by a validated automated segmentation method or a validated visual grading scale. Genotype data in each study were imputed to the 1000 Genomes reference. Within each ethnic group, we investigated the relationship between each SNP and WMH burden using a linear regression model adjusted for age, sex, intracranial volume, and principal components of ancestry. A meta-analysis was conducted for each ethnicity separately and for the combined sample. In the European descent samples, we confirmed a previously known locus on chr17q25 (p=2.7×10(-19)) and identified novel loci on chr10q24 (p=1.6×10(-9)) and chr2p21 (p=4.4×10(-8)). In the multi-ethnic meta-analysis, we identified two additional loci, on chr1q22 (p=2.0×10(-8)) and chr2p16 (p=1.5×10(-8)). The novel loci contained genes that have been implicated in Alzheimer's disease (chr2p21, chr10q24), intracerebral hemorrhage (chr1q22), neuro-inflammatory diseases (chr2p21), and glioma (chr10q24, chr2p16). -We identified four novel genetic loci that implicate inflammatory and glial proliferative pathways in the development of white matter hyperintensities in addition to previously-proposed ischemic mechanisms.
    Circulation Cardiovascular Genetics 02/2015; · 5.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Whether novel risk variants of Alzheimer's disease (AD) identified through genome-wide association studies also influence magnetic resonance imaging-based intermediate phenotypes of AD in the general population is unclear. We studied association of 24 AD risk loci with intracranial volume, total brain volume, hippocampal volume (HV), white matter hyperintensity burden, and brain infarcts in a meta-analysis of genetic association studies from large population-based samples (N = 8175-11,550). In single-SNP based tests, AD risk allele of APOE (rs2075650) was associated with smaller HV (p = 0.0054) and CD33 (rs3865444) with smaller intracranial volume (p = 0.0058). In gene-based tests, there was associations of HLA-DRB1 with total brain volume (p = 0.0006) and BIN1 with HV (p = 0.00089). A weighted AD genetic risk score was associated with smaller HV (beta ± SE = -0.047 ± 0.013, p = 0.00041), even after excluding the APOE locus (p = 0.029). However, only association of AD genetic risk score with HV, including APOE, was significant after multiple testing correction (including number of independent phenotypes tested). These results suggest that novel AD genetic risk variants may contribute to structural brain aging in nondemented older community persons. Copyright © 2015 Elsevier Inc. All rights reserved.
    Neurobiology of aging. 01/2015;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: White matter hyperintensities (WMH) are frequently observed on MRI in ischemic stroke patients as well as in normal elderly individuals. Besides the progression of WMH, the regression of WMH has been rarely reported. Thus, we aimed to investigate how WMH change over time in patients with ischemic stroke, particularly focusing on regression. We enrolled ischemic stroke patients who underwent brain MRI more than twice with at least a 6 month time-interval. Based on T2-weighted or FLAIR MRI, WMH were visually assessed, followed by semiautomatic volume measurement. Progression or regression of WMH change was defined when 0.25 cc increase or decrease was observed and it was also combined with visible change. A statistical analysis was performed on the pattern of WMH change over time and factors associated with change. A total of 100 patients were enrolled. Their age (mean±SD) was 67.5±11.8 years and 63 were male. The imaging time-interval (mean) was 28.0 months. WMH progressed in 27, regressed in 9 and progressed in distinctive regions and regressed in others in 5 patients. A multiple logistic regression model showed that age (odds ratio[OR] 2.51, 90% confidence interval[CI] 1.056-5.958), male gender (OR 2.957, 95% CI 1.051-9.037), large vessel disease (OR 1.955, 95% CI 1.171-3.366), and renal dysfunction (OR 2.900, 90% CI 1.045-8.046) were associated with progression. Regarding regression, no significant factor was found in the multivariate analysis. In 21.5% of ischemic stroke patients, regression of WMH was observed. WMH progression was observed in a third of ischemic stroke patients.
    Journal of stroke. 01/2015; 17(1):60-6.


Available from