A physiological model of softwood cambial growth.

Department of Forest Sciences, University of Helsinki, Helsinki, Finland.
Tree Physiology (Impact Factor: 2.85). 10/2010; 30(10):1235-52. DOI: 10.1093/treephys/tpq068
Source: PubMed

ABSTRACT Cambial growth was modelled as a function of detailed levelled physiological processes for cell enlargement and water and sugar transport to the cambium. Cambial growth was described at the cell level where local sugar concentration and turgor pressure induce irreversible cell expansion and cell wall synthesis. It was demonstrated how transpiration and photosynthesis rates, metabolic and physiological processes and structural features of a tree mediate their effects directly on the local water and sugar status and influence cambial growth. Large trees were predicted to be less sensitive to changes in the transient water and sugar status, compared with smaller ones, as they have more water and sugar storage and were, therefore, less coupled to short-term changes in the environment. Modelling the cambial dynamics at the individual cell level turned out to be a complex task as the radial short-distance transport of water and sugars and control signals determining cell division and cessation of cell enlargement and cell wall synthesis had to be described simultaneously.

  • Source
    New Phytologist 11/2013; · 6.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the Nordic countries, growth of Norway spruce (Picea abies (L.) Karst.) is generally limited by low availability of nutrients, especially nitrogen. Optimizing forest management requires better insight on how growth responds to the environmental conditions and their manipulation. The aim of this study was to analyse the effects of nutrient optimization on timing and the rate of tracheid formation of Norway spruce and to follow the differentiation of newly formed tracheids. The study was performed during two growing seasons in a long-term nutrient optimization experiment in northern Sweden, where all essential macro- and micronutrients were supplied in irrigation water every second day from mid-June to mid-August. The control plots were without additional nutrients and water. Tracheid formation in the stem was monitored throughout the growing season by weekly sampling of microcores at breast height. The onset of xylogenesis occurred in early June, but in early summer there were no significant between-treatment differences in the onset and relative rate of tracheid formation. In both treatments, the onset of secondary cell wall formation occurred in mid-June. The maximum rate of tracheid formation occurred close to the summer solstice and 50% of the tracheids had been accumulated in early July. Optimized nutrition resulted in the formation of ∼50% more tracheids and delayed the cessation of tracheid formation, which extended the tracheid formation period by 20-50%, compared with control trees. The increased growth was mainly an effect of enhanced tracheid formation rate during the mid- and later-part of the growing season. In the second year, the increased growth rate also resulted in 11% wider tracheids. We conclude that the onset and rate of tracheid formation and differentiation during summer is primarily controlled by photoperiod, temperature and availability of nutrients, rather than supply of carbohydrates.
    Tree Physiology 10/2013; · 2.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tree models simulate productivity using general gas exchange responses and structural relationships, but they rarely check whether leaf gas exchange and resulting water and assimilate transport and driving pressure gradients remain within acceptable physical boundaries. This study presents an implementation of the cohesion-tension theory of xylem transport and the Münch hypothesis of phloem transport in a realistic 3-D tree structure and assesses the gas exchange and transport dynamics.
    Annals of Botany 05/2014; · 3.45 Impact Factor