Article

Synergistic Effects of Long-Term Antioxidant Diet and Behavioral Enrichment on beta-Amyloid Load and Non-Amyloidogenic Processing in Aged Canines

Institute for Brain Aging and Dementia, University of California, Irvine, Irvine, California 92697-4540, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 07/2010; 30(29):9831-9. DOI: 10.1523/JNEUROSCI.6194-09.2010
Source: PubMed

ABSTRACT A long-term intervention (2.69 years) with an antioxidant diet, behavioral enrichment, or the combined treatment preserved and improved cognitive function in aged canines. Although each intervention alone provided cognitive benefits, the combination treatment was additive. We evaluate the hypothesis that antioxidants, enrichment, or the combination intervention reduces age-related beta-amyloid (Abeta) neuropathology, as one mechanism mediating observed functional improvements. Measures assessed were Abeta neuropathology in plaques, biochemically extractable Abeta(40) and Abeta(42) species, soluble oligomeric forms of Abeta, and various proteins in the beta-amyloid precursor protein (APP) processing pathway. The strongest and most consistent effects on Abeta pathology were observed in animals receiving the combined antioxidant and enrichment treatment. Specifically, Abeta plaque load was significantly decreased in several brain regions, soluble Abeta(42) was decreased selectively in the frontal cortex, and a trend for lower Abeta oligomer levels was found in the parietal cortex. Reductions in Abeta may be related to shifted APP processing toward the non-amyloidogenic pathway, because alpha-secretase enzymatic activity was increased in the absence of changes in beta-secretase activity. Although enrichment alone had no significant effects on Abeta, reduced Abeta load and plaque maturation occurred in animals receiving antioxidants as a component of treatment. Abeta measures did not correlate with cognitive performance on any of the six tasks assessed, suggesting that modulation of Abeta alone may be a relatively minor mechanism mediating cognitive benefits of the interventions. Overall, the data indicate that multidomain treatments may be a valuable intervention strategy to reduce neuropathology and improve cognitive function in humans.

0 Followers
 · 
66 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aged dog naturally develops cognitive decline in many different domains (including learning and memory) but also exhibits human-like individual variability in the aging process. The neurobiological basis for cognitive dysfunction may be related to structural changes that reflect neurodegeneration. Molecular cascades that contribute to degeneration in the aging dog brain include the progressive accumulation of beta-amyloid (Aβ) in diffuse plaques and in the cerebral vasculature. In addition, neuronal dysfunction occurs as a consequence of mitochondrial dysfunction and cumulative oxidative damage. In combination, the aged dog captures key features of human aging, making them particularly useful for the development of preventive or therapeutic interventions to improve aged brain function. These interventions can then be translated into human clinical trials. This article is part of a Special Issue entitled: Animal Models of Disease.
    Biochimica et Biophysica Acta 03/2013; 1832(9). DOI:10.1016/j.bbadis.2013.03.016 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aged dogs spontaneously develop many features of human aging and Alzheimer's disease (AD) including cognitive decline and neuropathology. In this review, we discuss age-dependent learning tasks, memory tasks, and functional measures that can be used in aged dogs for sensitive treatment outcome measures. Neuropathology that is linked to cognitive decline is described along with examples of treatment studies that show reduced neuropathology in aging dogs (dietary manipulations, behavioral enrichment, immunotherapy, and statins). Studies in canine show that multi-targeted approaches may be more beneficial than single pathway manipulations (e.g., antioxidants combined with behavioral enrichment). Aging canine studies show good predictive validity for human clinical trials outcomes (e.g., immunotherapy) and several interventions tested in dogs strongly support a prevention approach (e.g., immunotherapy and statins). Further, dogs are ideally suited for prevention studies as they the age because onset of cognitive decline and neuropathology strongly support longitudinal interventions that can be completed within a 3-5 year period. Disadvantages to using the canine model are that they lengthy, use labor-intensive comprehensive cognitive testing, and involve costly housing (almost as high as that of non-human primates). However, overall, using the dog as a preclinical model for testing preventive approaches for AD may complement work in rodents and non-human primates.
    Frontiers in Pharmacology 03/2014; 5:47. DOI:10.3389/fphar.2014.00047
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain plasticity refers to the remarkable property of cerebral neurons to change their structure and function in response to experience, a fundamental theoretical theme in the field of basic research and a major focus for neural rehabilitation following brain disease. While much of the early work on this topic was based on deprivation approaches relying on sensory experience reduction procedures, major advances have been recently obtained using the conceptually opposite paradigm of environmental enrichment, whereby an enhanced stimulation is provided at multiple cognitive, sensory, social, and motor levels. In this survey, we aim to review past and recent work concerning the influence exerted by the environment on brain plasticity processes, with special emphasis on the underlying cellular and molecular mechanisms and starting from experimental work on animal models to move to highly relevant work performed in humans. We will initiate introducing the concept of brain plasticity and describing classic paradigmatic examples to illustrate how changes at the level of neuronal properties can ultimately affect and direct key perceptual and behavioral outputs. Then, we describe the remarkable effects elicited by early stressful conditions, maternal care, and preweaning enrichment on central nervous system development, with a separate section focusing on neurodevelopmental disorders. A specific section is dedicated to the striking ability of environmental enrichment and physical exercise to empower adult brain plasticity. Finally, we analyze in the last section the ever-increasing available knowledge on the effects elicited by enriched living conditions on physiological and pathological aging brain processes.
    Physiological Reviews 01/2014; 94(1):189-234. DOI:10.1152/physrev.00036.2012 · 29.04 Impact Factor