Application of induced pluripotent stem (iPS) cells in periodontal tissue regeneration.

Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts 02111, USA.
Journal of Cellular Physiology (Impact Factor: 4.22). 01/2011; 226(1):150-7. DOI: 10.1002/jcp.22316
Source: PubMed

ABSTRACT Tissue engineering provides a new paradigm for periodontal tissue regeneration in which proper stem cells and effective cellular factors are very important. The objective of this study was, for the first time, to investigate the capabilities and advantages of periodontal tissue regeneration using induced pluripotent stem (iPS) cells and enamel matrix derivatives (EMD). In this study the effect of EMD gel on iPS cells in vitro was first determined, and then tissue engineering technique was performed to repair periodontal defects in three groups: silk scaffold only; silk scaffold + EMD; and silk scaffold + EMD + iPS cells. EMD greatly enhanced the mRNA expression of Runx2 but inhibited the mRNA expression of OC and mineralization nodule formation in vitro. Transplantation of iPS cells showed higher expression levels of OC, Osx, and Runx2 genes, both 12 and 24 days postsurgery. At 24 days postsurgery in the iPS cell group, histological analysis showed much more new alveolar bone and cementum formation with regenerated periodontal ligament between them. The results showed the commitment role that EMD contributes in mesenchymal progenitors to early cells in the osteogenic lineage. iPS cells combined with EMD provide a valuable tool for periodontal tissue engineering, by promoting the formation of new cementum, alveolar bone, and normal periodontal ligament.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Endogenous regeneration through cell homing provides an alternative approach for tissue regeneration, except cell transplantation, especially considering clinical translation. However, tooth root regeneration through cell homing remains a provocative approach in need of intensive study. Both platelet-rich fibrin (PRF) and treated dentin matrix (TDM) are warehouses of various growth factors, which can promote cell homing. We hypothesized that endogenous stem cells are able to sense biological cues from PRF membrane and TDM, and contribute to the regeneration of tooth root, including soft and hard periodontal tissues. Therefore, the biological effects of canine PRF and TDM on periodontal ligament stem cells (PDLSCs) and bone marrow mesenchymal stem cells (BMSCs) were evaluated respectively in vitro. Beagle dogs were used as orthotopic transplantation model. It was found that PRF significantly recruited and stimulated the proliferation of PDLSCs and BMSCs in vitro. Together, PRF and TDM induced cell differentiation by upregulating the mineralization-related gene expression of bone sialoprotein (BSP) and osteopotin (OPN) after 7 days coculture. In vivo, transplantation of autologous PRF and allogeneic TDM into fresh tooth extraction socket achieved successful root regeneration 3 months postsurgery, characterized by the regeneration of cementum and periodontal ligament (PDL)-like tissues with orientated fibers, indicative of functional restoration. The results suggest that tooth root connected to the alveolar bone by cementum-PDL complex can be regenerated through the implantation of PRF and TDM in a tooth socket microenvironment, probably by homing of BMSCs and PDLSCs. Furthermore, bioactive cues and inductive microenvironment are key factors for endogenous regeneration. This approach provides a tangible pathway toward clinical translation.
    Tissue engineering. Part A. 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: During tooth development, the special structure of dental follicle and dental papilla enables dental papilla cells (DPCs) and dental follicle cells (DFCs) to make contact with each other. Octamer-binding transcription factor 4 (Oct-4), sex determining region Y box-2 (SOX-2), and cellular homologue of avian myelocytomatosis virus oncogene (MYC) (OSM) are associated with reprogramming and pluripotency. However, whether the expression of OSM could be activated through cell–cell communication is not known. In this study, the distribution of OSM in rat tooth germ was investigated by immunohistochemical staining. An in-vitro co-culture system of DPCs and DFCs was established. Cell proliferation, cell apoptosis, cell cycle stages, and expression of OSM were investigated by Cell Counting Kit 8 (CCK8) analysis, flow cytometry, real-time PCR, and immunohistochemical staining. We found that Oct-4 and SOX-2 were strongly expressed in tooth germ on days 7 and 9 after birth, whereas MYC was expressed only on day 9. Cell proliferation and apoptosis were inhibited, the cell cycle was arrested in the G0/G1 phase, and the propidium iodide (PI) value was downregulated. Expression of Oct-4 and SOX-2 was significantly elevated in both cell types after 3 d of co-culture, whereas expression of MYC was not significantly elevated until day 5. These results indicate that the optimized microenvironment with cell–cell communication enhanced the expression of reprogramming markers associated with reprogramming capacity in DPCs and DFCs, both in vivo and in vitro.
    European Journal Of Oral Sciences 08/2014; 122(4). · 1.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to investigate the neurogenic differentiation of human dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), and stem cells from apical papilla (SCAP).
    Journal of the Korean Association of Oral and Maxillofacial Surgeons. 08/2014; 40(4):173-80.


Available from
May 20, 2014