Article

Application of Induced Pluripotent Stem (iPS) Cells in Periodontal Tissue Regeneration

Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts 02111, USA.
Journal of Cellular Physiology (Impact Factor: 3.87). 01/2011; 226(1):150-7. DOI: 10.1002/jcp.22316
Source: PubMed

ABSTRACT Tissue engineering provides a new paradigm for periodontal tissue regeneration in which proper stem cells and effective cellular factors are very important. The objective of this study was, for the first time, to investigate the capabilities and advantages of periodontal tissue regeneration using induced pluripotent stem (iPS) cells and enamel matrix derivatives (EMD). In this study the effect of EMD gel on iPS cells in vitro was first determined, and then tissue engineering technique was performed to repair periodontal defects in three groups: silk scaffold only; silk scaffold + EMD; and silk scaffold + EMD + iPS cells. EMD greatly enhanced the mRNA expression of Runx2 but inhibited the mRNA expression of OC and mineralization nodule formation in vitro. Transplantation of iPS cells showed higher expression levels of OC, Osx, and Runx2 genes, both 12 and 24 days postsurgery. At 24 days postsurgery in the iPS cell group, histological analysis showed much more new alveolar bone and cementum formation with regenerated periodontal ligament between them. The results showed the commitment role that EMD contributes in mesenchymal progenitors to early cells in the osteogenic lineage. iPS cells combined with EMD provide a valuable tool for periodontal tissue engineering, by promoting the formation of new cementum, alveolar bone, and normal periodontal ligament.

Full-text

Available from: Cesar Sommer, May 14, 2015
2 Followers
 · 
364 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: More than 30 years have passed since the first successful application of regenerative therapy for treatment of periodontal diseases. Despite being feasible, periodontal regeneration still faces numerous challenges, and complete restoration of structure and function of the diseased periodontium is often considered an unpredictable task. This review highlights developing basic science and technologies for potential application to achieve reconstruction of the periodontium. A comprehensive search of the electronic bibliographic database PubMed was conducted to identify different emerging therapeutic approaches reported to influence either biologic pathways and/or tissues involved in periodontal regeneration. Each citation was assessed based on its abstract, and the full text of potentially eligible reports was retrieved. Based on the review of the full papers, their suitability for inclusion in this report was determined. In principle, only reports from scientifically well-designed studies that presented preclinical in vivo (animal studies) or clinical (human studies) evidence for successful periodontal regeneration were included. Hence, in vitro studies, namely those conducted in laboratories without any live animals, were excluded. In case of especially recent and relevant reviews with a narrow focus on specific regenerative approaches, they were identified as such, and thereby the option of referring to them to summarize the status of a specific approach, in addition to or instead of listing each separately, was preserved. Admittedly, the presence of subjectivity in the selection of studies to include in this overview cannot be excluded. However, it is believed that the contemporary approaches described in this review collectively represent the current efforts that have reported preclinical or clinical methods to successfully enhance regeneration of the periodontium. Today's challenges facing periodontal regenerative therapy continue to stimulate important research and clinical development, which, in turn, shapes the current concept of periodontal tissue engineering. Emerging technologies-such as stem cell therapy, bone anabolic agents, genetic approaches, and nanomaterials-also offer unique opportunities to enhance the predictability of current regenerative surgical approaches and inspire development of novel treatment strategies.
    Journal of Periodontology 02/2015; 86(2 Suppl):S134-52. DOI:10.1902/jop.2015.130689 · 2.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human induced pluripotent stem cells (hiPSCs) are an exciting cell source with great potential for tissue engineering. Human bone marrow mesenchymal stem cells (hBMSCs) have been used in clinics but are limited by several disadvantages, hence alternative sources of MSCs such as umbilical cord MSCs (hUCMSCs) are being investigated. However, there has been no report comparing hiPSCs, hUCMSCs and hBMSCs for bone regeneration. The objectives of this pilot study were to investigate hiPSCs, hUCMSCs and hBMSCs for bone tissue engineering, and compare their bone regeneration via seeding on biofunctionalized macroporous calcium phosphate cement (CPC) in rat cranial defects. For all three types of cells, approximately 90% of the cells remained alive on CPC scaffolds. Osteogenic genes were up-regulated, and mineral synthesis by cells increased with time in vitro for all three types of cells. The new bone area fractions at 12 weeks (mean ± sd; n = 6) were (30.4 ± 5.8)%, (27.4 ± 9.7)% and (22.6 ± 4.7)% in hiPSC-MSC-CPC, hUCMSC-CPC and hBMSC-CPC respectively, compared to (11.0 ± 6.3)% for control (p < 0.05). No significant differences were detected among the three types of stem cells (p > 0.1). New blood vessel density was higher in cell-seeded groups than control (p < 0.05). De novo bone formation and participation by implanted cells was confirmed via immunohistochemical staining. In conclusion, (1) hiPSCs, hUCMSCs and hBMSCs greatly enhanced bone regeneration, more than doubling the new bone amount of cell-free CPC control; (2) hiPSC-MSCs and hUCMSCs represented viable alternatives to hBMSCs; (3) biofunctionalized macroporous CPC-stem cell constructs had a robust capacity for bone regeneration. Copyright © 2015. Published by Elsevier Ltd.
    Acta Biomaterialia 02/2015; DOI:10.1016/j.actbio.2015.02.011 · 5.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives The purpose of this study was to investigate the neurogenic differentiation of human dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), and stem cells from apical papilla (SCAP). Materials and Methods After induction of neurogenic differentiation using commercial differentiation medium, expression levels of neural markers, microtubule-associated protein 2 (MAP2), class III β-tubulin, and glial fibrillary acidic protein (GFAP) were identified using reverse transcriptase polymerase chain reaction (PCR), real-time PCR, and immunocytochemistry. Results The induced cells showed neuron-like morphologies, similar to axons, dendrites, and perikaryons, which are composed of neurons in DPSCs, PDLSCs, and SCAP. The mRNA levels of neuronal markers tended to increase in differentiated cells. The expression of MAP2 and β-tubulin III also increased at the protein level in differentiation groups, even though GFAP was not detected via immunocytochemistry. Conclusion Human dental stem cells including DPSCs, PDLSCs, and SCAP may have neurogenic differentiation capability in vitro. The presented data support the use of human dental stem cells as a possible alternative source of stem cells for therapeutic utility in the treatment of neurological diseases.
    08/2014; 40(4):173-80. DOI:10.5125/jkaoms.2014.40.4.173