Article

Genome-scale DNA methylation analysis.

Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, CA 94158, USA.
Epigenomics (Impact Factor: 5.22). 02/2010; 2(1):105-17. DOI: 10.2217/epi.09.35
Source: PubMed

ABSTRACT The haploid human genome contains approximately 29 million CpGs that exist in a methylated, hydroxymethylated or unmethylated state, collectively referred to as the DNA methylome. The methylation status of cytosines in CpGs and occasionally in non-CpG cytosines influences protein–DNA interactions, gene expression, and chromatin structure and stability. The degree of DNA methylation at particular loci may be heritable transgenerationally and may be altered by environmental exposures and diet, potentially contributing to the development of human diseases. For the vast majority of normal and disease methylomes however, less than 1% of the CpGs have been assessed, revealing the formative stage of methylation mapping techniques. Thus, there is significant discovery potential in new genome-scale platforms applied to methylome mapping, particularly oligonucleotide arrays and the transformative technology of next-generation sequencing. Here, we outline the currently used methylation detection reagents and their application to microarray and sequencing platforms. A comparison of the emerging methods is presented, highlighting their degrees of technical complexity, methylome coverage and precision in resolving methylation. Because there are hundreds of unique methylomes to map within one individual and interindividual variation is likely to be significant, international coordination is essential to standardize methylome platforms and to create a full repository of methylome maps from tissues and unique cell types.

2 Followers
 · 
132 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although CpG dinucleotides remain the primary site for DNA methylation in mammals, there is emerging evidence that DNA methylation at non-CpG sites (CpA, CpT and CpC) is not only present in mammalian cells, but may play a unique role in the regulation of gene expression. For some time it has been known that non-CpG methylation is abundant in plants and present in mammalian embryonic stem cells, but non-CpG methylation was thought to be lost upon cell differentiation. However, recent publications have described a role for non-CpG methylation in adult mammalian somatic cells including the adult mammalian brain, skeletal muscle, and hematopoietic cells and new interest in this field has been stimulated by the availability of high throughput sequencing techniques that can accurately measure this epigenetic modification. Genome wide assays indicate that non-CpG methylation is negligible in human fetal brain, but abundant in human adult brain tissue. Genome wide measurement of non-CpG methylation coupled with RNA-Sequencing indicates that in the human adult brain non-CpG methylation levels are inversely proportional to the abundance of mRNA transcript at the associated gene. Additionally specific examples where alterations in non-CpG methylation lead to changes in gene expression have been described; in PGC1α in human skeletal muscle, IFN-γ in human T-cells and SYT11 in human brain, all of which contribute to the development of human disease.
    Biology 12/2014; 3(4):739-51. DOI:10.3390/biology3040739
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Discordant results obtained in bisulfite assays using MethPrimers (PCR primers designed using MethPrimer software or assuming that non-CpGs cytosines are non methylated) versus primers insensitive to cytosine methylation lead us to hypothesize a technical bias. We therefore used the two kinds of primers to study different experimental models and methylation statuses. We demonstrated that MethPrimers negatively select hypermethylated DNA sequences in the PCR step of the bisulfite assay, resulting in CpG methylation underestimation and non-CpG methylation masking, failing to evidence differential methylation statuses. We also describe the characteristics of "Methylation-Insensitive Primers" (MIPs), having degenerated bases (G/A) to cope with the uncertain C/U conversion. As CpG and non-CpG DNA methylation patterns are largely variable depending on the species, developmental stage, tissue and cell type, a variable extent of the bias is expected. The more the methylome is methylated, the greater is the extent of the bias, with a prevalent effect of non-CpG methylation. These findings suggest a revision of several DNA methylation patterns so far documented and also point out the necessity of applying unbiased analyses to the increasing number of epigenomic studies.
    PLoS ONE 02/2015; 10(e0118318). DOI:10.1371/journal.pone.0118318 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer is a major health burden within the ever-increasingly aging US population. The molecular mechanisms involved in prostate cancer are diverse and heterogeneous. In this context, epigenetic changes, both global and gene specific, are now an emerging alternate mechanism in disease initiation and progression. The three major risk factors in prostate cancer: age, geographic ancestry, and environment are all influenced by epigenetics and additional significant insight is required to gain an understanding of the underlying mechanisms. The androgen receptor and its downstream effector pathways, central to prostate cancer initiation and progression, are subject to a multitude of epigenetic alterations. In this review we focus on the global perspective of epigenetics and the use of recent next-generation sequencing platforms to interrogate epigenetic changes in the prostate cancer genome.
    Methods in molecular biology (Clifton, N.J.) 01/2015; 1238:125-40. DOI:10.1007/978-1-4939-1804-1_7 · 1.29 Impact Factor

Preview

Download
1 Download
Available from

Similar Publications