Acid-Catalysed Conversion of Saccharides into Furanic Aldehydes in the Presence of Three-Dimensional Mesoporous Al-TUD-1

Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
Molecules (Impact Factor: 2.42). 06/2010; 15(6):3863-77. DOI: 10.3390/molecules15063863
Source: PubMed


The one-pot acid-catalysed conversion of mono/di/polysaccharides (inulin, xylan, cellobiose, sucrose, glucose, fructose, xylose) into 2-furfuraldehyde (FUR) or 5-hydroxymethylfurfural (HMF) in the presence of aluminium-containing mesoporous TUD-1 (denoted as Al-TUD-1, Si/Al = 21), at 170 degrees C was investigated. Xylose gave 60% FUR yield after 6 h reaction; hexose-based mono/disaccharides gave less than 20% HMF yield; polysaccharides gave less than 20 wt % FUR or HMF yields after 6 h. For four consecutive 6 h batches of the xylose reaction in the presence of Al-TUD-1, the FUR yields achieved were similar, without significant changes in Si/Al ratio.

Download full-text


Available from: Anabela Valente,
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this Critical Review, we discuss how carbohydrates can be transformed into a variety of chemicals through heterogeneous catalysis. We focus particularly on oxidation, reduction and dehydration of hexoses, as well as one-pot reactions of di- and polysaccharides. Most of the reactions involve heterogeneous catalysts, although some interesting homogeneously catalyzed processes are also included.
    Green Chemistry 03/2011; 13(3). DOI:10.1039/C0GC00639D · 8.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have prepared a series of well-characterized acid catalysts, including Zr–P, SiO2–Al2O3, WOX/ZrO2, γ-Al2O3, and HY zeolite and tested them for aqueous-phase dehydration of xylose. We have characterized the concentration of both Brønsted and Lewis acid sites in these catalysts with TPD and FT-IR spectroscopy using gas-phase NH3 and compared the catalytic activity and selectivity with that of homogeneous catalysts for the dehydration of aqueous solutions of xylose. The catalyst selectivity is a function of the Brønsted to Lewis acid site ratio for both the heterogeneous and homogeneous reactions. Lewis acid sites decrease furfural selectivity by catalyzing a side reaction between xylose and furfural to form humins (insoluble degradation products). At 20% xylose conversion, catalysts with high Brønsted to Lewis acid ratios, such as Zr–P, exhibit furfural selectivities as much as 30 times higher than catalysts with higher Lewis acid site concentrations. Dehydration reactions using ion-exchange polymer resins with high Brønsted acid site concentrations showed similar selectivities to Zr–P and HCl. Using HY zeolite revealed a low furfural selectivity due to strong irreversible adsorption of the furfural in the pores, causing an increase in the rate of humin formation. Thus, to design more efficient aqueous-phase dehydration catalysts, it is desirable to have a high ratio of Brønsted to Lewis acid sites. Furthermore, gas-phase characterization of acid sites can be used to predict catalytic activity in the aqueous phase.
    Journal of Catalysis 04/2011; 279(1):174-182. DOI:10.1016/j.jcat.2011.01.013 · 6.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The last few decades have witnessed a spiralling growth of interest in polymers from renewable resources within both the scientific and industrial communities. This review attempts to illustrate this state of affairs through a panoramic overview of recent progress in the most relevant areas related to such materials, including the polymerisation of natural monomers and their derivatives, the exploitation of biopolymers, as such, or after appropriate modifications, as well as the preparation of composites and blends. Because of the sheer size and depth of the field, no attempt has been made here to provide a comprehensive coverage, emphasis being placed instead on conveying the extent and originality of contributions reported in the last few years in important domains like sugars and polysaccharides, vegetable oils, lignin, pine resin derivatives, furans, and a series of other monomers.
    Green Chemistry 05/2011; 13(5):1061-1083. DOI:10.1039/C0GC00789G · 8.02 Impact Factor
Show more