Thymic Stromal Lymphopoietin Gene Promoter Polymorphisms Are Associated with Susceptibility to Bronchial Asthma

Laboratory for Respiratory Diseases, Center for Genomic Medicine, Institute of Physical and Chemical Research, Kanagawa, Japan.
American Journal of Respiratory Cell and Molecular Biology (Impact Factor: 3.99). 06/2011; 44(6):787-93. DOI: 10.1165/rcmb.2009-0418OC
Source: PubMed


Thymic stromal lymphopoietin (TSLP) triggers dendritic cell--mediated T helper (Th) 2 inflammatory responses. A single-nucleotide polymorphism (SNP), rs3806933, in the promoter region of the TSLP gene creates a binding site for the transcription factor activating protein (AP)-1. The variant enhances AP-1 binding to the regulatory element, and increases the promoter--reporter activity of TSLP in response to polyinosinic-polycytidylic acid (poly[I:C]) stimulation in normal human bronchial epithelium (NHBE). We investigated whether polymorphisms including the SNP rs3806933 could affect the susceptibility to and clinical phenotypes of bronchial asthma. We selected three representative (i.e., Tag) SNPs and conducted association studies of the TSLP gene, using two independent populations (639 patients with childhood atopic asthma and 838 control subjects, and 641 patients with adult asthma and 376 control subjects, respectively). We further examined the effects of corticosteroids and a long-acting β(2)-agonist (salmeterol) on the expression levels of the TSLP gene in response to poly(I:C) in NHBE. We found that the promoter polymorphisms rs3806933 and rs2289276 were significantly associated with disease susceptibility in both childhood atopic and adult asthma. The functional SNP rs3806933 was associated with asthma (meta-analysis, P = 0.000056; odds ratio, 1.29; 95% confidence interval, 1.14-1.47). A genotype of rs2289278 was correlated with pulmonary function. Moreover, the induction of TSLP mRNA and protein expression induced by poly(I:C) in NHBE was synergistically impaired by a corticosteroid and salmeterol. TSLP variants are significantly associated with bronchial asthma and pulmonary function. Thus, TSLP may serve as a therapeutic target molecule for combination therapy.

Download full-text


Available from: Yoichi Suzuki,
  • Source
    • "Furthermore, it has been demonstrated that TSLP and Th2-attracting chemokines are increased in airways of asthmatic subjects compared with normal controls (120). In addition, different studies have shown an association between genetic polymorphisms in the human IL-7Rα chain and TSLP genes with allergy, allergic rhinitis, and bronchial asthma further highlighting a possible link between these proteins and allergy (121–123). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Allergy is an exacerbated response of the immune system against non-self-proteins called allergens and is typically characterized by biased type-2 T helper cell and deleterious IgE mediated immune responses. The allergic cascade starts with the recognition of allergens by antigen presenting cells, mainly dendritic cells (DCs), leading to Th2 polarization, switching to IgE production by B cells, culminating in mast cell sensitization and triggering. DCs have been demonstrated to play a crucial role in orchestrating allergic diseases. Using different C-type lectin receptors DCs are able to recognize and internalize a number of allergens from diverse sources leading to sensitization. Furthermore, there is increasing evidence highlighting the role of epithelial cells in triggering and modulating immune responses to allergens. As well as providing a physical barrier, epithelial cells can interact with allergens and influence DCs behavior through the release of a number of Th2 promoting cytokines. In this review we will summarize current understanding of how allergens are recognized by DCs and epithelial cells and what are the consequences of such interaction in the context of allergic sensitization and downstream events leading to allergic inflammation. Better understanding of the molecular mechanisms of allergen recognition and associated signaling pathways could enable developing more effective therapeutic strategies that target the initial steps of allergic sensitization hence hindering development or progression of allergic diseases.
    Frontiers in Immunology 11/2013; 4(article 356):356. DOI:10.3389/fimmu.2013.00356
  • Source
    • "TSLP conditions DCs to favor Th2 induction through prevention of IL-12 production and upregulation of the costimulatory molecule OX40L [134]. It must be pointed out that TSLP was overexpressed in bronchial biopsies from asthmatics and TSLP gene promoter polymorphisms were shown to be associated with susceptibility to bronchial asthma [135, 136]. TSLP induced the differentiation of basophils from bone marrow and basophils could represent the initial source of IL-4 to strengthen the Th2 polarization initiated by DCs [9, 137]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Sensitizations to house dust mites (HDM) trigger strong exacerbated allergen-induced inflammation of the skin and airways mucosa from atopic subjects resulting in atopic dermatitis as well as allergic rhinitis and asthma. Initially, the Th2-biased HDM allergic response was considered to be mediated only by allergen B- and T-cell epitopes to promote allergen-specific IgE production as well as IL-4, IL-5, and IL-13 to recruit inflammatory cells. But this general molecular model of HDM allergenicity must be revisited as a growing literature suggests that stimulations of innate immune activation pathways by HDM allergens offer new answers to the following question: what makes an HDM allergen an allergen? Indeed, HDM is a carrier not only for allergenic proteins but also microbial adjuvant compounds, both of which are able to stimulate innate signaling pathways leading to allergy. This paper will describe the multiple ways used by HDM allergens together with microbial compounds to control the initiation of the allergic response through engagement of innate immunity.
    02/2013; 2013(4):735031. DOI:10.1155/2013/735031
  • Source
    • "Statistical significance was lost when adjusted for multiple comparisons (Bonferroni correction; p < 0.016). Both rs2289276 and rs3806933, which are located in the promoter region of TSLP, are known to influence TSLP expression [14]. However, no significant differences in allele frequencies were observed between patients with GO and those without GO or between patients with GO and the normal population (Table 1). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Graves disease (GD) is an organ-specific autoimmune disease characterized by hyperthyroidism, diffuse goiter, autoantibodies against thyroid-specific antigens, and dermopathy. Studies of GD have demonstrated the importance of the Th2 and Th17 immune responses in mediating disease progression. In the present study, we investigated the role of a Th2 cytokine, thymic stromal lymphopoietin (TSLP), in GD and Th17 differentiation. Methods In this study, we genotyped 470 patients with GD at 3 single nucleotide polymorphisms (SNPs) in TSLP. In addition, the serum concentrations of TSLP were determined in 432 patients and 272 controls. Ten patients and controls each were further screened using in vitro Th17 differentiation assays. The SNPs were genotyped using ABI TaqMan® SNP genotyping assays. For the Th17 differentiation assays, peripheral blood mononuclear cells (PBMCs) isolated from the patients and controls were placed into Th17 differentiation media, and interleukin 17 expression levels were determined. Results Haplotype analysis indicated that patients with the Ht3 (TCC) haplotype have a 3.28-fold higher risk of developing GD (p = 0.007), whereas those with the Ht5 (TCG) haplotype had a 0.03-fold, reduced risk of developing GD (p = 1 × 10−14). SNP rs3806933 (p = 0.007) was associated with female Graves ophthalmopathy (GO). TSLP expression levels were higher in GD patients than in control subjects, and TLSP was also shown to promote the differentiation of Th17 cells in GD patients. Conclusions These results suggest that polymorphisms in TSLP may be used as genetic markers for the diagnosis and prognosis of GD. Furthermore, TLSP may be a target for treating GD.
    BMC Medical Genetics 11/2012; 13(1):116. DOI:10.1186/1471-2350-13-116 · 2.08 Impact Factor
Show more