Oxidative stress in development: nature or nurture?

Department of Pediatrics, University of Pennsylvania School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
Free Radical Biology and Medicine (Impact Factor: 5.71). 10/2010; 49(7):1147-51. DOI: 10.1016/j.freeradbiomed.2010.07.011
Source: PubMed

ABSTRACT An unavoidable consequence of aerobic respiration is the generation of reactive oxygen species (ROS). These may negatively impact development. Nevertheless, a certain amount of oxidative stress is required to allow for the normal progression of embryonic and fetal growth. Alterations in placental oxidative stress results in altered placental function and ultimately altered fetal growth and/or developmental programming leading to long-term consequences into adulthood. This article reviews the role of redox in fetal development and will focus on how developmental programming is influenced by the fetal and placental redox state as well as discuss potential therapeutic interventions.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress caused by elevated reactive oxygen species (ROS) is one of the predominant causes of both male and female infertility. Oxidative stress conditions cause either cell death or senescence by oxidation of cellular molecules including nucleic acid, proteins, and lipids. It is particularly important to minimize oxidative stress when in vitro fertilization is performed for the purpose of assisted reproduction. The problems associated with assisted reproductive technology are becoming evident, and it is now the time to clarify its mechanisms and cope with them. On the other hand, the beneficial roles of ROS, such as intracellular signaling, have become evident. The antithetical functions of ROS make it more difficult to overcome the problems caused by oxidative stress. Despite the difficulty in understanding mammalian reproduction, the mechanisms and problems can be gradually unveiled by advanced technology such as genetic modification of animals.
    Reproductive Medicine and Biology 04/2013; 13(2):71-79. DOI:10.1007/s12522-013-0170-0
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: In offspring with intrauterine growth restriction (IUGR), where oxidative stress may play an important role in inducing metabolic syndrome, nutrition restriction has been shown to improve oxidative status. In this study, we aimed to investigate the effect of postnatal nutrition restriction on the oxidative status of IUGR neonates. Methods: A total of twelve pairs of piglets, of normal birth-weight (NBW) and with IUGR (7 days old), respectively, were randomly allocated to have adequate nutritional intake (ANI) and restricted nutritional intake (RNI) for a period of 21 days, respectively. This design produced 4 experimental groups: NBW-ANI, IUGR-ANI, NBW-RNI and IUGR-RNI (n = 6 per group). Serum, ileum and liver samples were analyzed for antioxidant parameters and the mRNA expression of genes with regard to oxidative status. The data were subjected to general linear model analysis and Duncan's test with a 5% significance level. Results: Irrespective of nutritional intake, the IUGR pigs had markedly lower activity of glutathione peroxidase (GPX), gene expressions of liver mitochondrial manganese superoxide dismutase (Mn-SOD) and ileum cytoplasmic copper/zinc (CuZn)-SOD and, accordingly, there was a markedly higher malondialdehyde concentration in the liver of these pigs compared to in the NBW pigs. Irrespective of body weight, pigs receiving ANI treatment had significantly lower activities of antioxidant enzymes in the serum (total antioxidative capability, CuZn-SOD and GPX) and liver (total SOD and glutathione reductase) and decreased gene expression of liver CuZn-SOD and Mn-SOD compared to the pigs receiving RNI. In addition, the IUGR pigs had a markedly lower concentration of liver reduced glutathione (GSH), ratio of GSH to oxidized glutathione, gene expression of ileum CuZn-SOD and extracellular SOD than the NBW pigs when receiving ANI, but not all of these differences were observed in those receiving RNI. Conclusion: IUGR neonates may have poor antioxidant defense systems, and postnatal nutrition restriction has the potential to prevent oxidative stress. © 2014 S. Karger AG, Basel.
    Neonatology 11/2014; 107(2):93-99. DOI:10.1159/000368179 · 2.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Life-history traits are often involved in trade-offs whose outcome would depend on the availability of resources but also on the state of specific molecular signals. Early conditions can influence trade-offs and program the phenotype throughout the lifetime, with oxidative stress likely involved in many taxa. Here we address the potential regulatory role of a single intracellular antioxidant in life history trade-offs. Blood glutathione levels were reduced in a large sample of birds (zebra finch Taeniopygia guttata) during development using the synthesis inhibitor buthionine sulfoximine (BSO). Results revealed several modifications in the adult phenotype. BSO-treated nestlings showed lower glutathione and plasma antioxidant levels. In adulthood, BSO birds endured greater oxidative damage in erythrocytes but stronger expression of a sexual signal. Moreover, adult BSO females also showed weaker resistance to oxidative stress but were heavier and showed better body condition. Results suggest that low glutathione values during growth favor the investment in traits that should improve fitness returns, probably in the form of early reproduction. Higher oxidative stress in adulthood may be endured if this cost is paid later in life. Either the presence of specific signaling mechanisms or the indirect effect of increased oxidative stress can explain our findings.
    The American Naturalist 03/2015; DOI:10.1086/679613 · 4.45 Impact Factor