Article

Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5.

Department of Cancer Biology and Division of Metabolism and Chronic Disease, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
Nature (Impact Factor: 42.35). 07/2010; 466(7305):451-6. DOI: 10.1038/nature09291
Source: PubMed

ABSTRACT Obesity induced in mice by high-fat feeding activates the protein kinase Cdk5 (cyclin-dependent kinase 5) in adipose tissues. This results in phosphorylation of the nuclear receptor PPARgamma (peroxisome proliferator-activated receptor gamma), a dominant regulator of adipogenesis and fat cell gene expression, at serine 273. This modification of PPARgamma does not alter its adipogenic capacity, but leads to dysregulation of a large number of genes whose expression is altered in obesity, including a reduction in the expression of the insulin-sensitizing adipokine, adiponectin. The phosphorylation of PPARgamma by Cdk5 is blocked by anti-diabetic PPARgamma ligands, such as rosiglitazone and MRL24. This inhibition works both in vivo and in vitro, and is completely independent of classical receptor transcriptional agonism. Similarly, inhibition of PPARgamma phosphorylation in obese patients by rosiglitazone is very tightly associated with the anti-diabetic effects of this drug. All these findings strongly suggest that Cdk5-mediated phosphorylation of PPARgamma may be involved in the pathogenesis of insulin-resistance, and present an opportunity for development of an improved generation of anti-diabetic drugs through PPARgamma.

1 Bookmark
 · 
378 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recruiting thermogenic adipocytes in white adipose tissue represents a potential therapeutic strategy for obesity. Interestingly, PPARγ, a major regulator of lipogenesis, is also a key factor in inducing thermogenic genes in adipose tissue.
    Biochimica et Biophysica Acta (BBA) - General Subjects 01/2015; 1850(4). DOI:10.1016/j.bbagen.2015.01.002 · 3.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear receptors (NRs) are members of a large superfamily of evolutionarily related transcription factors that control a plethora of biological processes. NRs orchestrate complex events such as development, organ homeostasis, metabolism, immune function, and reproduction. Approximately one-half of the 48 human NRs have been shown to act as ligand-regulated transcription factors and respond directly to a large variety of endogenous hormones and metabolites that are generally hydrophobic and small in size (eg, retinoic acid or estradiol). The second half of the NR family comprises the so-called orphan receptors, for which regulatory ligands are still unknown or may not exist despite the presence of a C-terminal ligand-binding domain, which is the hallmark of all NRs. Several chemicals released into the environment (eg, bisphenols, phthalates, parabens, etc) share some physicochemical properties with natural ligands, allowing them to bind to NRs and activate or inhibit their action. Collectively referred to as endocrine disruptors or endocrine-disrupting chemicals (EDCs), these environmental pollutants are highly suspected to cause a wide range of developmental, reproductive, neurological, or metabolic defects in humans and wildlife. Crystallographic studies are revealing unanticipated mechanisms by which chemically diverse EDCs interact with the ligand-binding domain of NRs. These studies thereby provide a rational basis for designing novel chemicals with lower impacts on human and animal health. In this review, we provide a structural and mechanistic view of endocrine disrupting action using estrogen receptors α and β, (ERα/β), peroxisome proliferator activated receptor γ (PPARγ), and their respective environmental ligands as representative examples.
    Acta Pharmacologica Sinica 12/2014; 36(1). DOI:10.1038/aps.2014.133 · 2.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Type 2 diabetes is an emerging health challenge all over the world as a result of urbanization, high prevalence of obesity, sedentary lifestyle and other stress related factors compounded with the genetic prevalence. The health consequences and economic burden of the obesity and related diabetes mellitus epidemic are enormous. Different signaling molecules secreted by adipocytes have been implicated in the development of obesity and associated insulin resistance in type 2 diabetes. Human adiponectin, a 244-amino acid collagen-like protein is solely secreted by adipocytes and acts as a hormone with anti-inflammatory and insulin-sensitizing properties. Adiponectin secretion, in contrast to secretion of other adipokines, is paradoxically decreased in obesity which may be attributable to inhibition of adiponectin gene transcription. There are several mechanisms through which adiponectin may decrease the risk of type 2 diabetes, including suppression of hepatic gluconeogenesis, stimulation of fatty acid oxidation in the liver, stimulation of fatty acid oxidation and glucose uptake in skeletal muscle, and stimulation of insulin secretion. To date, no systematic review has been conducted that evaluate the potential importance of adiponectin metabolism in insulin resistance. In this review attempt has been made to explore the relevance of adiponectin metabolism for the development of diabetes mellitus. This article also identifies this novel target for prospective therapeutic research aiming successful management of diabetes mellitus.
    02/2015; 6(1):151-166. DOI:10.4239/wjd.v6.i1.151

Full-text (2 Sources)

Download
129 Downloads
Available from
May 16, 2014