The new generation of intravenous iron: chemistry, pharmacology, and toxicology of ferric carboxymaltose

Vifor (International) Inc., St. Gallen, Switzerland.
Arzneimittel-Forschung (Impact Factor: 0.7). 01/2010; 60(6a):345-53. DOI: 10.1055/s-0031-1296299
Source: PubMed


An ideal preparation for intravenous iron replacement therapy should balance effectiveness and safety. Compounds that release iron rapidly tend to cause toxicity, while large molecules can induce antibody formation and cause anaphylactic reactions. There is therefore a need for an intravenous iron preparation that delivers appropriate amounts of iron in a readily available form but with minimal side effects and thus with an excellent safety profile. In this paper, a review is given on the chemistry, pharmacology, and toxicology of ferric carboxymaltose (FCM, Ferinject), a stable and robust complex formulated as a colloidal solution with a physiological pH. The complex is gradually taken up mainly from the hepatic reticulo-endothelial system (RES), followed by effective delivery of iron to the endogeneous transport system for the haem synthesis in new erythrocytes, as shown in studies on the pharmacodynamics and pharmacokinetics with radio-labelled FCM. Studies with radio-labelled FCM also demonstrated a barrier function of the placenta and a low transfer of iron into the milk of lactating rats. Safety pharmacology studies indicated a favourable profile with regard to cardiovascular, central nervous, respiratory, and renal toxicity. A high maximum non-lethal dose was demonstrated in the single-dose toxicity studies. Furthermore, based on the No-Observed-Adverse-Effect-Levels (NOAELs) found in repeated-dose toxicity studies and on the cumulative doses administered, FCM has good safety margins. Reproductive and developmental toxicity studies did not reveal any direct or indirect harmful effects. No genotoxic potential was found in in vitro or in vivo studies. Moreover, antigenicity studies showed no cross-reactivity of FMC with anti-dextran antibodies and also suggested that FCM does not possess sensitizing potential. Lastly, no evidence of irritation was found in local tolerance studies with FCM. This excellent toxicity profile and the high effectiveness of FCM allow the administration of high doses as a single infusion or bolus injection, which will enhance the cost-effectiveness and convenience of iron replacement therapy. In conclusion, FCM has many of the characteristics of an ideal intravenous iron preparation.

Download full-text


Available from: Peter Geisser,
640 Reads
  • Source
    • "FCM was developed for rapid IV administration in high doses for the treatment of iron deficiency [15] [16] and the rapid infusion of up to 1000 mg of FCM over 15 min has been shown to be well tolerated. The FCM complex has a nearly neutral pH (5.0–7.0) with a physiologic osmolarity and no dextran cross-reactivity [17]. The iron-carbohydrate FCM complex is more stable than ferric gluconate or iron sucrose, permitting slow and controlled delivery of iron into target tissues. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background. Iron deficiency anemia (IDA) is a common hematological complication with potentially serious clinical consequences that may require intravenous iron therapy. Ferric carboxymaltose (FCM) is a stable, nondextran iron formulation administered intravenously in large single doses to treat IDA. Objective. Two open-label, randomized, placebo-controlled trials evaluated safety of multiple or single 750 mg FCM doses compared to standard medical care (SMC) in IDA patients. Secondary endpoints were improvements in hemoglobin and iron indices. Design and Patients. Adults with hemoglobin ≤12 g/dL, ferritin ≤100 or ≤300 ng/mL with transferrin saturation ≤30% were randomized to receive single (n = 366) or weekly (n = 343) FCM or SMC (n = 360 and n = 366). Results. Significantly greater (P ≤ 0.001) increases in hemoglobin and iron indices occurred in FCM groups versus SMC. In the multidose study, up to two infusions of FCM were needed to reach target iron levels versus 3-5 of intravenous iron comparators. FCM and SMC groups had similar incidences and types of adverse events and serious adverse events. Transient hypophosphatemia not associated with adverse events or clinical sequelae occurred in the FCM groups. Conclusion. Intravenous FCM is safe, well tolerated, and associated with improvements in hemoglobin and iron indices comparable to SMC when administered in single doses of up to 750 mg at a rate of 100 mg/min. Fewer FCM infusions were required to reach target iron levels compared to other intravenous iron preparations.
    Anemia 09/2012; 2012(5):172104. DOI:10.1155/2012/172104
  • Source
    • "Articles identified were examined online to assess whether they might be a clinical study of efficacy or harm, and hard copy obtained of any regarded as probably being randomised trials or cohort studies. In addition, references of retrieved articles, CTRs, and review articles [30,35,36] were examined for any otherwise unidentified studies. "
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT: Recommendations given for intravenous iron treatment are typically not supported by a high level of evidence. This meta-analysis addressed this by summarising the available date from clinical trials of ferric carboxymaltose using clinical trial reports and published reports. Clinical trial reports were supplemented by electronic literature searches comparing ferric carboxymaltose with active comparators or placebo. Various outcomes were sought for efficacy (attainment of normal haemoglobin (Hb), increase of Hb by a defined amount, for example), together with measures of harm, including serious adverse events and deaths. Fourteen studies were identified with 2,348 randomised patients exposed to ferric carboxymaltose, 832 to oral iron, 762 to placebo, and 384 to intravenous iron sucrose. Additional data were available from cohort studies. Intravenous ferric carboxymaltose was given up to the calculated iron deficit (up to 1,000 mg in one week) for iron deficiency anaemia secondary to chronic kidney disease, blood loss in obstetric and gynaecological conditions, gastrointestinal disease, and other conditions like heart failure. The most common comparator was oral iron, and trials lasted 1 to 24 weeks. Intravenous ferric carboxymaltose improved mean Hb, serum ferritin, and transferrin saturation levels; the mean end-of-trial increase over oral iron was, for Hb 4.8 (95% confidence interval 3.3 to 6.3) g/L, for ferritin 163 (153 to 173) μg/L, and for transferrin saturation 5.3% (3.7 to 6.8%). Ferric carboxymaltose was significantly better than comparator in achievement of target Hb increase (number needed to treat (NNT) 6.8; 5.3 to 9.7) and target Hb NNT (5.9; 4.7 to 8.1). Serious adverse events and deaths were similar in incidence in ferric carboxymaltose and comparators; rates of constipation, diarrhoea, and nausea or vomiting were lower than with oral iron. This review examined the available trials of intravenous ferric carboxymaltose using details from published papers and unpublished clinical trial reports. It increases the evidence available to support recommendations given for intravenous iron treatment, but there are limited trial data comparing different intravenous iron preparations.
    BMC Blood Disorders 09/2011; 11(1, article 4):4. DOI:10.1186/1471-2326-11-4
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ferric carboxymaltose (Ferinject®, Injectafer®) is an intravenous iron preparation approved in numerous countries for the treatment of iron deficiency. A single high dose of ferric carboxymaltose (up to 750 mg of iron in the US and 1,000 mg of iron in the EU) can be infused in a short time frame (15 min). Consequently, fewer doses of ferric carboxymaltose may be needed to replenish iron stores compared with some other intravenous iron preparations (e.g. iron sucrose). Ferric carboxymaltose improved self-reported patient global assessment, New York Heart Association functional class and exercise capacity in patients with chronic heart failure and iron deficiency in two randomized, placebo-controlled trials (FAIR-HF and CONFIRM-HF). In other randomized controlled trials, ferric carboxymaltose replenished iron stores and corrected anaemia in various populations with iron-deficiency anaemia, including patients with chronic kidney disease, inflammatory bowel disease or heavy uterine bleeding, postpartum iron-deficiency anaemia and perioperative anaemia. Intravenous ferric carboxymaltose was generally well tolerated, with a low risk of hypersensitivity reactions. It was generally better tolerated than oral ferrous sulfate, mainly reflecting a lower incidence of gastrointestinal adverse effects. The most common laboratory abnormality seen in ferric carboxymaltose recipients was transient, asymptomatic hypophosphataemia. The higher acquisition cost of ferric carboxymaltose appeared to be offset by lower costs for other items, with the potential for cost savings. In conclusion, ferric carboxymaltose is an important option for the treatment of iron deficiency.
    Drugs 01/2009; 69(6):739-56. DOI:10.1007/s40265-014-0332-3 · 4.34 Impact Factor
Show more