Rational design of novel peptidic DnaK ligands.

Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle-Saale, Germany.
ChemBioChem (Impact Factor: 3.74). 08/2010; 11(12):1727-37. DOI: 10.1002/cbic.201000166
Source: PubMed

ABSTRACT The hsp70 chaperone DnaK from E. coli plays a major role in cellular stress response and is involved in assisted protein folding in vivo. By screening a combinatorial peptide library, we identified several DnaK-specific peptide ligands with nanomolar affinities, which are able to inhibit the secondary amide peptide bond cis/trans isomerase (APIase) activity of DnaK, as well as DnaK/DnaJ/GrpE-assisted refolding of firefly luciferase. Our designed DnaK inhibitors have the capability to penetrate E. coli cells and feature a high protease resistance. Once inside the cell, they physically target DnaK. NMR-based (1)H/(15)N-HSQC experiments furthermore confirmed that the designed peptidic ligands all bind in an identical manner to the conventional peptide-binding site of DnaK. The subsequent blocking of DnaK function apparently results in the observed antibacterial effects on E. coli cells, with minimum inhibitory concentrations in the range of 100 microM.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Hsp70 chaperones have been implicated in assisting protein folding of newly synthesized polypeptide chains, refolding of misfolded proteins as well as protein trafficking. For these functions, the chaperones need to exhibit a significant promiscuity in binding to different sequences of hydrophobic peptide stretches. To characterize the structural basis of sequence specificity and flexibility of the Escherichia coli Hsp70 chaperone DnaK, we have analyzed crystal structures of the substrate binding domain of the protein in complex with artificially designed peptides as well as small proline-rich antimicrobial peptides (Pr-AMPs). Pr-AMPs from mammals and insects were identified to target DnaK after cell penetration. Interestingly, the complex crystal structures reveal two different peptide binding modes. The peptides can either bind in a forward or in a reverse direction to the conventional substrate binding cleft of DnaK in an extended conformation. Superposition of the two binding modes shows a remarkable similarity in the side chain orientations and hydrogen bonding pattern despite the reversed peptide orientation. The DnaK chaperone has evolved to bind peptides in both orientations in the substrate binding cleft with comparable energy without rearrangements of the protein. Optimal hydrophobic interactions with binding pockets -2 to 0 appear to be the main determinant for the orientation and sequence position of peptide binding.
    Journal of Molecular Biology 04/2013; · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The specific interaction of peptides with proteins is often a key factor which determines biological activities. The determination of K(d) values of such interactions is commonly performed with fluorescence polarization. However, fluorescence polarization assays are prone to false-positive results due to the potential for non-specific interactions and only afford very low signal-to-background ratios. Here, we present as an alternative a fluorescence resonance energy transfer based quenching assay to measure peptide-protein interactions in solution. In a test setup where antimicrobial peptides were tested for their affinity towards the protein DnaK, the assay provided high specificity and good reproducibility and correlated with the results obtained by fluorescence polarization methods. Furthermore, we established a fast prescreening method which will allow a highly efficient screening of peptide libraries by reducing the amount of sample by 98% compared to conventional fluorescence polarization assays.
    Analytical and Bioanalytical Chemistry 05/2012; 403(9):2725-31. · 3.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We identified nine small-molecule hit compounds of Heat shock 70kDa protein 5 (HSPA5) from cascade in silico screening based on the binding modes of the tetrapeptides derived from the peptide substrate or inhibitors of Escherichia coli HSP70. Two compounds exhibit promising inhibition activities from cancer cell viability and tumor inhibition assays. The binding modes of the hit compounds provide a platform for development of selective small molecule inhibitors of HSPA5.
    Bioorganic & medicinal chemistry letters 03/2013; · 2.65 Impact Factor