Graded Attenuation of TCR Signaling Elicits Distinct Autoimmune Diseases by Altering Thymic T Cell Selection and Regulatory T Cell Function

Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.
The Journal of Immunology (Impact Factor: 5.36). 08/2010; 185(4):2295-305. DOI: 10.4049/jimmunol.1000848
Source: PubMed

ABSTRACT Mice with a mutation of the zeta-associated protein of 70 kDa gene (skg mutation) are genetically prone to develop autoimmune arthritis, depending on the environment. In a set of mice with the mutation, the amount of zeta-associated protein of 70 kDa protein as well as its tyrosine phosphorylation upon TCR stimulation decreased from +/+, skg/+, skg/skg, to skg/- mice in a stepwise manner. The reduction resulted in graded alterations of thymic positive and negative selection of self-reactive T cells and Foxp3(+) natural regulatory T cells (Tregs) and their respective functions. Consequently, skg/- mice spontaneously developed autoimmune arthritis even in a microbially clean environment, whereas skg/skg mice required stimulation through innate immunity for disease manifestation. After Treg depletion, organ-specific autoimmune diseases, especially autoimmune gastritis, predominantly developed in +/+, at a lesser incidence in skg/+, but not in skg/skg BALB/c mice, which suffered from other autoimmune diseases, especially autoimmune arthritis. In correlation with this change, gastritis-mediating TCR transgenic T cells were positively selected in +/+, less in skg/+, but not in skg/skg BALB/c mice. Similarly, on the genetic background of diabetes-prone NOD mice, diabetes spontaneously developed in +/+, at a lesser incidence in skg/+, but not in skg/skg mice, which instead succumbed to arthritis. Thus, the graded attenuation of TCR signaling alters the repertoire and the function of autoimmune T cells and natural Tregs in a progressive manner. It also changes the dependency of disease development on environmental stimuli. These findings collectively provide a model of how genetic anomaly of T cell signaling contributes to the development of autoimmune disease.


Available from: Yoshinaga Ito, May 30, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: T cells that mediate autoimmune diseases such as rheumatoid arthritis (RA) are difficult to characterize because they are likely to be deleted or inactivated in the thymus if the self antigens they recognize are ubiquitously expressed. One way to obtain and analyze these autoimmune T cells is to alter T cell receptor (TCR) signaling in developing T cells to change their sensitivity to thymic negative selection, thereby allowing their thymic production. From mice thus engineered to generate T cells mediating autoimmune arthritis, we isolated arthritogenic TCRs and characterized the self antigens they recognized. One of them was the ubiquitously expressed 60S ribosomal protein L23a (RPL23A), with which T cells and autoantibodies from RA patients reacted. This strategy may improve our understanding of the underlying drivers of autoimmunity.
    Science 10/2014; 346(6207):363-368. DOI:10.1126/science.1259077 · 31.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective The spondyloarthritides share genetic susceptibility, interleukin-23 (IL-23) dependence, and the involvement of microbiota. The aim of the current study was to elucidate how host genetics influence gut microbiota and the relationship between microbiota and organ inflammation in spondyloarthritides. MethodsBALB/c ZAP-70(W163C)-mutant (SKG) mice, Toll-like receptor 4 (TLR-4)-deficient SKG mice, and wild-type BALB/c mice were housed under specific pathogen-free conditions. SKG and wild-type BALB/c mice were maintained under germ-free conditions, and some of these mice were recolonized with altered Schaedler flora. All of the mice were injected intraperitoneally with microbial -1,3-glucan (curdlan). Arthritis, spondylitis, and ileitis were assessed histologically. Microbiome composition was analyzed in serial fecal samples obtained from mice that were co-housed beginning at the time of weaning, using 454 pyrosequencing. Infiltrating cells and cytokines in the peritoneal cavity were measured by flow cytometry and enzyme-linked immunosorbent assay. Cytokine, endoplasmic reticulum (ER) stress marker, and tight junction protein transcription was measured by quantitative real-time polymerase chain reaction. ResultsMicrobiota content and response to curdlan varied according to whether T cell receptor signal strength was normal or was impaired due to the ZAP-70(W163C) mutation. Curdlan triggered acute inflammation regardless of the presence of the SKG allele or microbiota. However, no or limited microbiota content attenuated the severity of arthritis. In contrast, ileal IL-23 expression, ER stress, lymph node IL-17A production, goblet cell loss, and ileitis development were microbiota-dependent. Ileitis but not arthritis was suppressed by microbiota transfer upon co-housing SKG mice with wild-type BALB/c mice, as well as by TLR-4 deficiency. Conclusion The interaction between immunogenetic background and host microbiota leads to an IL-23-dependent loss of mucosal function, triggering ileitis in response to curdlan.
    10/2014; 66(10). DOI:10.1002/art.38773
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gene variants that disrupt TCR signaling can cause severe immune deficiency, yet less disruptive variants are sometimes associated with immune pathology. Null mutations of the gene encoding the scaffold protein Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76), for example, cause an arrest of T cell positive selection, whereas a synthetic membrane-targeted allele allows limited positive selection but is associated with proinflammatory cytokine production and autoantibodies. Whether these and other enigmatic outcomes are due to a biochemical uncoupling of tolerogenic signaling, or simply a quantitative reduction of protein activity, remains to be determined. In this study we describe a splice variant of Lcp2 that reduced the amount of wild-type SLP-76 protein by ∼90%, disrupting immunogenic and tolerogenic pathways to different degrees. Mutant mice produced excessive amounts of proinflammatory cytokines, autoantibodies, and IgE, revealing that simple quantitative reductions of SLP-76 were sufficient to trigger immune dysregulation. This allele reveals a dose-sensitive threshold for SLP-76 in the balance of immunity and immune dysregulation, a common disturbance of atypical clinical immune deficiencies. Copyright © 2015 by The American Association of Immunologists, Inc.