Article

Simultaneous HPLC-MS-MS quantification of 8-iso-PGF(2 alpha) and 8,12-iso-iPF(2 alpha) in CSF and brain tissue samples with on-line cleanup

Department Pathology and Laboratory Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences (Impact Factor: 2.78). 08/2010; 878(24):2209-16. DOI: 10.1016/j.jchromb.2010.06.029
Source: PubMed

ABSTRACT Quantitation of isoprostanes such as 8-iso-PGF(2alpha) and 8,12-iso-iPF(2alpha)-VI in biological fluids has been proposed as a reliable test of oxidant stress and inflammation in a variety of disorders. This paper presents a liquid chromatography method with tandem mass spectrometry detection for the simultaneous analysis of these two isoprostanes in human CSF and brain tissue samples. An API 5000 triple quadrupole instrument (AB Sciex, Foster City, CA, USA) with an APCI ion source was used in this study. Aliquots of CSF samples (0.25mL) were treated with a methanol:zinc sulfate mixture followed by on-line cleanup on an extraction column (Validated-C(18)) with 0.1% formic acid. The brain tissue samples were homogenized and lipids were extracted using Folch solution. Solid-phase extraction columns (C(18)) were used for the purification of the brain isoprostane fraction. Chromatographic separation was achieved using an analytical column (Synergi C(18) HydroRP) with 0.1% formic acid in water and a mixture of methanol:acetonitrile under isocratic conditions. The mass spectrometer was operated in the MRM scan and negative ion mode. The quadrupoles were set to detect the molecular ions [M-H](-) and high mass fragments of isoprostanes: m/z 353-->193amu (8-iso-PGF(2alpha)) and m/z 353-->115amu (8,12-iso-iPF(2alpha)-VI) and their deuterated internal standards: m/z 357-->197amu (8-iso-PGF(2alpha)-d(4)) and m/z 364-->115amu (8,12-iso-iPF(2alpha)-VI-d(11)). The lower limit of quantification was 2.5pg/mL for 8-iso-PGF(2alpha) and 5.0pg/mL for 8,12-iso-PF(2alpha)-VI for the CSF method and 10.0pg/0.1g of tissue and 30.0pg/0.1g of tissue for 8-iso-PGF(2alpha) and 8,12-iso-iPF(2alpha)-VI, respectively, for the brain tissue method. No ion suppression or enhancement of the detection of 8-isoPGF(2alpha), 8,12-isoPF(2alpha)-VI or both internal standards was found.

1 Bookmark
 · 
117 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Cigarette smoking in adults is associated with abnormalities in brain neurobiology. Smoking-induced central nervous system oxidative stress (OxS) is a potential mechanism associated with these abnormalities. The goal of this study was to compare cognitively-normal elders on cerebrospinal fluid (CSF) levels of F2-isoprostane biomarkers of OxS. Methods Elders with a lifetime history of smoking (smokers; n = 50; 75 ± 5 years of age; 34 ± 28 pack-years; approximately 12% were actively smoking at the time of study) were compared to never-smokers (n = 61; 76 ± 6 years of age) on CSF iPF2α-III and 8,12, iso-iPF2α-VI F2-isoprostanes levels. F2-isoprostanes levels were quantitated with HPLC-atmospheric pressure chemical ionization-tandem mass spectrometry. Associations between F2-isoprostanes levels, hippocampal volumes, and cigarette exposure measures were also evaluated. Results Smokers showed higher iPF2α-III level than never-smokers. An age x smoking status interaction was observed for 8,12, iso-iPF2α-VI, where smokers demonstrate a significantly greater concentration with increasing age than non-smokers. In smokers only, higher 8,12, iso-iPF2α-VI concentration was associated with smaller hippocampal volume, and greater iPF2α-III level was related to greater pack years. Conclusions This is the first study to demonstrate that a history of cigarette smoking in cognitively-normal elders was associated with significantly elevated CSF F2-isoprostane levels and greater age-related increases in F2-isoprostane levels, and that higher F2-isoprostane levels in smokers were related to smaller hippocampal volume. These findings provide additional novel evidence that a history of chronic smoking during adulthood is associated with adverse effects on the human brain that are potentially persistent even with extended smoking cessation.
    Drug and Alcohol Dependence 09/2014; 142. DOI:10.1016/j.drugalcdep.2014.06.030 · 3.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Isoprostanes (IsoPs) are prostaglandin-like molecules generated independent of the cyclooxygenase (COX) by the free radical-induced peroxidation of arachidonic acid. The first isoprostane species discovered were isomeric to prostaglandin F2α and were thus termed F2-IsoPs. Since the initial discovery of the F2-IsoPs, IsoPs with differing ring structures have been identified as well as IsoPs from different polyunsaturated fatty acids, including eicosapentaenoic acid and docosahexanenoic acid. The discovery of these molecules in vivo in humans has been a major contribution to the field of lipid oxidation and free radical research over the course of the past 25 years. These molecules have been determined to be both biomarkers and mediators of oxidative stress in numerous disease settings. This review focuses on recent developments in the field with an emphasis on clinical research. Special focus is given to the use of IsoPs as biomarkers in obesity, ischemia-reperfusion injury, the central nervous system, cancer, and genetic disorders. Additionally, attention is paid to diet and lifestyle factors that can affect endogenous levels of IsoPs. This article is part of a Special Issue entitled “Oxygenated metabolism of PUFA: Analysis and biological relevance.”
    Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 10/2014; 1851(4). DOI:10.1016/j.bbalip.2014.10.007 · 4.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Healthy Brain Initiative 2013-2018 seeks to optimize brain health as we age. Free radical injury is an important effector of molecular and cellular stress in the aging brain that derives from multiple sources.
    JAMA Neurology 07/2014; 71(9). DOI:10.1001/jamaneurol.2014.1428 · 7.01 Impact Factor

Full-text (3 Sources)

Download
15 Downloads
Available from
Jan 14, 2015