Inflammation dysregulates Notch signaling in endothelial cells: implication of Notch2 and Notch4 to endothelial dysfunction.

INSERM, U643, Nantes F44000, France.
Biochemical pharmacology (Impact Factor: 4.65). 12/2010; 80(12):2032-41. DOI: 10.1016/j.bcp.2010.07.010
Source: PubMed

ABSTRACT Although the involvement of the Notch pathway in several areas of vascular biology is now clearly established, its role in vascular inflammation at the endothelial level remains to be elucidated. In this study, we demonstrated that pro-inflammatory cytokines drive a specific regulation of the Notch pathway in vascular endothelial cells (ECs). In arterial ECs, TNFα strongly modulates the pattern of Notch expression by decreasing Notch4 expression while increasing Notch2 expression. Changes in Notch expression were associated with a reduction in hes1 and hey2 expression and in CBF1 reporter gene activity, suggesting that TNFα regulates both Notch expression and activity. Notch2 and Notch4 regulations occurred independently and were found to be mostly mediated by the NFκB signaling pathways and PI3-kinase signaling pathways, respectively. Functionally, TNF-mediated Notch regulation promotes caspase-dependent EC apoptosis. Finally, our findings confirmed that dysregulated Notch signaling also occurs upon inflammation in vivo and correlates with caspase activation and apoptosis. In conclusion, inflammatory cytokines elicit a switch in Notch expression characterized by Notch2 predominance over Notch4 leading to a reduced Notch activity and promoting apoptosis. Thus, here we provide evidence for a role of soluble mediators of inflammation (i.e. cytokines) in the regulation of Notch signaling and for the implication of a dysregulated Notch pathway to endothelial and vascular dysfunction.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Members of the Notch family of transmembrane receptors, Notch1-4 in mammals, are involved in the regulation of cell fate decisions and cell proliferation in various organisms. The Notch4 isoform, which is specific to mammals, was originally identified as a viral oncogene in mice, Int3, able to initiate mammary tumors. In humans, Notch4 expression appears to be associated with breast cancer stem cells and endocrine resistance. Following ligand binding, the Notch4 receptor undergoes cleavage at the membrane and the Notch4-intracellular domain (ICD), translocates to the nucleus and regulates gene transcription. Little is known on the mechanisms regulating Notch4-ICD and its nuclear localization. Here, we describe the identification of four distinct AKT phosphorylation sites in human Notch4-ICD and demonstrate that AKT binds Notch4-ICD and phosphorylates all four sites in vitro and in vivo. The phosphorylation in cells is regulated by growth factors and is sensitive to phosphatidyl inositol-3 kinase (PI3K) inhibitors. This phosphorylation generates binding sites to the 14-3-3 regulatory proteins, which are involved in the regulation of nucleocytoplasmic shuttling of target proteins, restricting phosphorylated Notch4-ICD to the cytoplasm. Our findings provide a novel mechanism for Notch4-ICD regulation, suggesting a negative regulatory role for the PI3K-AKT pathway in Notch4 nuclear signaling.
    Scientific Reports 03/2015; 5:8782. DOI:10.1038/srep08782 · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Notch signaling has been established as a key regulator of cell fate in development, differentiation and homeostasis. In breast cancers, increased Notch1 and Notch4 activity have been implicated in tumor progression and, accumulation of the intracellular domain of Notch4 (ICN4), reported in basal breast cancer cells. While, TNF-Related Apoptosis-Inducing Ligand (TRAIL) receptor agonists have demonstrated selectively in targeting tumor cells, the majority of primary tumors are resistant to TRAIL. This necessitates the identification of factors that might regulate TRAIL sensitivity. Here we investigate TRAIL sensitivity in tumor cells following the modulation of Notch (1 and 4) activity using siRNA-mediated depletions or ectopic expression of GFP-tagged constructs of the intracellular domains of Notch1 (ICN1) or Notch4 (ICN4). Our findings suggest that Notch4, but not Notch1 signaling, sensitizes breast tumor cells to TRAIL-induced apoptosis. ICN4-induced sensitization to TRAIL is characterized by CBF1-dependence. Apoptosis was mediated via caspase-8 activation and regulated by the Bcl-2 family pro-apoptotic proteins Bak and Bid. Finally, we present evidence that endogenous Notch4 activity regulates susceptibility to TRAIL in basal-like breast cancer cells but not in cell lines of luminal origin. These experiments reveal a hitherto unexplored Notch4-TRAIL signaling axis in breast cancer cells. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    Journal of Cellular Biochemistry 02/2015; 116(7). DOI:10.1002/jcb.25094 · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Factor-inhibiting hypoxia-inducible factor (HIF)-1 (FIH-1) is an asparaginyl β-hydroxylase enzyme that was initially found to hydroxylate the HIF-α, preventing its transcriptional activity and leading to adaptive responses to hypoxia. More recently, other substrates, such as neurogenic locus notch homolog (Notch), have been found to be alternative FIH targets, but the biologic relevance of this regulation was never investigated. Given the key function of Notch in angiogenesis, we here investigate the role of FIH/Notch signaling in endothelial cells. We report that FIH-1 silencing in HUVECs results in reduced growth and increased apoptosis. The knockdown of FIH is associated with increased Notch2 activity, leading to enhanced expression of the Notch target hairy/enhancer-of-split related with YRPW motif protein 1 (Hey-1). Consistent with recent findings showing that Notch2 suppresses survivin (a key inhibitor of apoptosis), FIH targeting in HUVEC leads to selective repression of survivin in endothelial cells, thus promoting cell apoptosis and growth arrest. Our data support the concept that FIH-1 may interact with Notch2 and repress its activity, thereby playing a critical role in controlling the survival of vascular endothelial cells. These findings might pave the way toward novel, antiangiogenic strategies in disorders that are characterized by excessive vascular growth, such as cancer and rheumatoid arthritis.-Kiriakidis, S., Henze, A.-T., Kruszynska-Ziaja, I., Skobridis, K., Theodorou, V., Paleolog, E. M., Mazzone, M. Factor-inhibiting HIF-1 (FIH-1) is required for human vascular endothelial cell survival. © FASEB.
    The FASEB Journal 04/2015; DOI:10.1096/fj.14-252379 · 5.48 Impact Factor