Transmembrane peptides influence the affinity of sterols for phospholipid bilayers.

Department of Biochemistry and Pharmacy, Abo Akademi University, Turku, Finland.
Biophysical Journal (Impact Factor: 3.67). 07/2010; 99(2):526-33. DOI: 10.1016/j.bpj.2010.04.052
Source: PubMed

ABSTRACT Cholesterol is distributed unevenly between different cellular membrane compartments, and the cholesterol content increases from the inner bilayers toward the plasma membrane. It has been suggested that this cholesterol gradient is important in the sorting of transmembrane proteins. Cholesterol has also been to shown play an important role in lateral organization of eukaryotic cell membranes. In this study the aim was to determine how transmembrane proteins influence the lateral distribution of cholesterol in phospholipid bilayers. Insight into this can be obtained by studying how cholesterol interacts with bilayer membranes of different composition in the presence of designed peptides that mimic the transmembrane helices of proteins. For this purpose we developed an assay in which the partitioning of the fluorescent cholesterol analog CTL between LUVs and mbetaCD can be measured. Comparison of how cholesterol and CTL partitioning between mbetaCD and phospholipid bilayers with different composition suggests that CTL sensed changes in bilayer composition similarly as cholesterol. Therefore, the results obtained with CTL can be used to understand cholesterol distribution in lipid bilayers. The effect of WALP23 on CTL partitioning between DMPC bilayers and mbetaCD was measured. From the results it was clear that WALP23 increased both the order in the bilayers (as seen from CTL and DPH anisotropy) and the affinity of the sterol for the bilayer in a concentration dependent way. Although WALP23 also increased the order in DLPC and POPC bilayers the effects on CTL partitioning was much smaller with these lipids. This indicates that proteins have the largest effect on sterol interactions with phospholipids that have longer and saturated acyl chains. KALP23 did not significantly affect the acyl chain order in the phospholipid bilayers, and inclusion of KALP23 into DMPC bilayers slightly decreased CTL partitioning into the bilayer. This shows that transmembrane proteins can both decrease and increase the affinity of sterols for the lipid bilayers surrounding proteins. This is likely to affect the sterol distribution within the bilayer and thereby the lateral organization in biomembranes.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To study the role of the interfacial properties of ceramides in their interlipid interactions, we synthesized palmitoylceramide (PCer) analogs in which a methyl group was introduced to the amide-nitrogen or the C3-oxygen of the sphingosine backbone. A differential scanning calorimetry analysis of equimolar mixtures of palmitoylsphingomyelin (PSM) and PCer showed that these sphingolipids formed a complex gel phase that melted between 67°C and 74°C. The PCer analogs also formed gel phases with PSM, but they melted at lower temperatures compared with the system with PCer. In complex bilayers composed of an unsaturated glycerophospholipid, PSM, and cholesterol, the 3O-methylated ceramide formed a cholesterol-poor ordered phase with PSM. However, the 2N-methylated and doubly methylated (2N and 3O) PCer analogs failed to displace sterol from interactions with PSM. Like PCer, the analogs reduced sterol affinity for the complex bilayers, but this effect was most pronounced for the 3O-methylated ceramide. Taken together, our results show that 2N-methylation weakened the ceramide-PSM interactions, whereas the 3O-methylated ceramide behaved more like PCer in interactions with PSM. Our findings are compatible with the view that interlipid interactions between the amide-nitrogen and neighboring lipids are important for the cohesive properties of sphingolipids in membranes, and this also appears to be a valid model for ceramide.
    Biophysical Journal 12/2011; 101(12):2948-56. · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effects of cholesterol on various membrane proteins are of long-standing interest in membrane biophysics. Here we present systematic molecular dynamics simulations (totaling 1.4 μs) of integral protein phospholamban incorporated in POPC/cholesterol bilayers (containing 0, 11.11, 22.03, 33.33, and 50 mol% of cholesterol). Phospholamban is a key regulator of cardiac contractility and has recently emerged as a potential drug target. In agreement with experiments, our results show that in a cholesterol-free pure POPC bilayer, phospholamban exhibits broad conformational distribution, ranging from the closed T-state to the extended R-state, crucial for its functionality. Increasing cholesterol concentration progressively stabilizes the bent conformers of phospholamban over open structures, and favors extensive interactions of its amphipathic N-terminal helix with the bilayer surface. The interaction energies between the N-terminal helix of PLB and different POPC/cholesterol bilayers quantitatively confirm its stronger interaction with a higher cholesterol-containing membrane. Simulation with 50 mol% of cholesterol further supports the above conclusions, where phospholamban undergoes rapid conformational transition from extended to closed form, which remains stable for the rest of the simulation time and exhibits the strongest interaction with the membrane. Cholesterol participates in hydrogen-bonding and π-stacking interactions with polar and/or aromatic residues and favors membrane association of phospholamban. We observed cholesterol-enrichment in the neighborhood of phospholamban. Moreover, as a modulator of membrane biophysical properties, cholesterol modifies the hydrophobic matching and trans-membrane tilting of phospholamban and also hinders its 2D-lateral mobility. Altogether, our results highlight atomistic details of protein-lipid interplay and provide new insights into the possible effects of cholesterol on conformational dynamics of phospholamban in membrane bilayers.
    Physical Chemistry Chemical Physics 12/2011; 13(45):20188-98. · 3.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The sphingoid bases of sphingolipids, including ceramides, can vary in length from 12 to >20 carbons. To study how such length variation affects the bilayer properties of ceramides, we synthesized ceramides consisting of a C12-, C14-, C16-, C18-, or C20-sphing-4-enin derivative coupled to palmitic acid. The ceramides were studied in mixtures with palmitoyloleoylphosphocholine (POPC) and/or palmitoylsphingomyelin (PSM), and in more complex bilayers also containing cholesterol. The trans-parinaric acid lifetimes showed that 12:1- and 14:1-PCer failed to increase the order of POPC bilayers, whereas 16:1-, 18:1-, and 20:1-PCer induced ordered- or gel-phase formation. Nevertheless, all of the analogs were able to thermally stabilize PSM, and a chain-length-dependent increase in the main phase transition temperature of equimolar PSM/Cer bilayers was revealed by differential scanning calorimetry. Similar thermal stabilization of PSM-rich domains by the ceramides was observed in POPC bilayers with a trans-parinaric acid-quenching assay. A cholestatrienol-quenching assay and sterol partitioning experiments showed that 18:1- and 20:1-PCer formed sterol-excluding gel phases with PSM, reducing the overall bilayer affinity of sterol. The effect of 16:1-PCer on sterol distribution was less dramatic, and no displacement of sterol from the PSM environment was observed with 12:1- and 14:1-PCer. The results are discussed in relation to other structural features that affect the bilayer properties of ceramides.
    Biophysical Journal 11/2012; 103(9):1870-9. · 3.67 Impact Factor

Full-text (2 Sources)

Available from
May 30, 2014