Electromagnetic signals are produced by aqueous nanostructures derived from bacterial DNA sequences

Nanectis Biotechnologies, S.A. 98 rue Albert Calmette, F78350, Jouy en Josas, France.
Interdisciplinary Sciences Computational Life Sciences (Impact Factor: 0.67). 06/2009; 1(2):81-90. DOI: 10.1007/s12539-009-0036-7
Source: PubMed

ABSTRACT A novel property of DNA is described: the capacity of some bacterial DNA sequences to induce electromagnetic waves at high aqueous dilutions. It appears to be a resonance phenomenon triggered by the ambient electromagnetic background of very low frequency waves. The genomic DNA of most pathogenic bacteria contains sequences which are able to generate such signals. This opens the way to the development of highly sensitive detection system for chronic bacterial infections in human and animal diseases.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infectious diseases present public health challenges worldwide. An emerging integrative approach to treating infectious diseases is using nanoparticle (NP) forms of traditional and alternative medicines. Advantages of nanomedicine delivery methods include better disease targeting, especially for intracellular pathogens, ability to cross membranes and enter cells, longer duration drug action, reduced side effects, and cost savings from lower doses. We searched Pubmed articles in English with keywords related to nanoparticles and nanomedicine. Nanotechnology terms were also combined with keywords for drug delivery, infectious diseases, herbs, antioxidants, homeopathy, and adaptation. NPs are very small forms of material substances, measuring 1-100 nanometers along at least one dimension. Compared with bulk forms, NPs' large ratio of surface-area-to-volume confers increased reactivity and adsorptive capacity, with unique electromagnetic, chemical, biological, and quantum properties. Nanotechnology uses natural botanical agents for green manufacturing of less toxic NPs. Nanoparticle herbs and nutriceuticals can treat infections via improved bioavailability and antiinflammatory, antioxidant, and immunomodulatory effects. Recent studies demonstrate that homeopathic medicines may contain source and/or silica nanoparticles because of their traditional manufacturing processes. Homeopathy, as a form of nanomedicine, has a promising history of treating epidemic infectious diseases, including malaria, leptospirosis and HIV/AIDS, in addition to acute upper respiratory infections. Adaptive changes in the host's complex networks underlie effects. Nanomedicine is integrative, blending modern technology with natural products to reduce toxicity and support immune function. Nanomedicine using traditional agents from alternative systems of medicine can facilitate progress in integrative public health approaches to infectious diseases.
    European Journal of Integrative Medicine 04/2013; 5(2):126-140. DOI:10.1016/j.eujim.2012.11.002 · 0.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Within the frames of Alfv\'en sweep maser theory the description of morphological features of geomagnetic pulsations in the ionosphere with frequencies (0.1-10 Hz) in the vicinity of Schumann resonance (7.83 Hz) is obtained. It is shown that the related regular spectral shapes of geomagnetic pulsations in the ionosphere determined by "viscosity" and "elasticity" of magneto-plasma medium that control the nonlinear relaxation of energy and deviation of Alfv\'en wave energy around its equilibrium value. Due to the fact that the frequency bands of Alfv\'{e}n maser resonant structures practically coincide with the frequency band delta- and partially theta-rhythms of human brain, the problem of degree of possible impact of electromagnetic "pearl" type resonant structures (0.1-5 Hz) onto the brain bio-rhythms stability is discussed.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Numerous reports indicate robust mitogenic responses in human lymphocytes to low-frequency electromagnetic fields. We hypothesize that these observations reflect a wider platform for immune capability than presently recognized, whereby weak electromagnetic signals play the role of antigens. This notion hinges on whether pathogenic bacteria can emit correspondingly detectable electromagnetic signals. We make this case, recalling pertinent experimental evidence by Pohl and others implicating signal emission during cell replication due to rapid electric charge redistribution. If correct, this hypothesis would also offer a new approach to the coupled problems of hospital-acquired infections and rapid adaptations to antibacterial agents, suggesting the possible treatment of patients at risk using an electromagnetic vaccination procedure. Under the reasonable assumption that signals arising from diverse bacterial varieties can be separately catalogued, prophylaxis would be achieved by prior exposure of patients to electromagnetic signatures from high-morbidity sources. Among its potential advantages such treatment would be non-invasive, inexpensive, rapidly deployed, and conceivably, less likely to lose effectiveness over time due to bacterial adaptation.
    Medical Hypotheses 06/2012; 79(3):331-3. DOI:10.1016/j.mehy.2012.05.027 · 1.15 Impact Factor


Available from