Configural specificity of the lateral occipital cortex

Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.
Neuropsychologia (Impact Factor: 3.45). 09/2010; 48(11):3323-8. DOI: 10.1016/j.neuropsychologia.2010.07.016
Source: PubMed

ABSTRACT While regions of the lateral occipital cortex (LOC) are known to be selective for objects relative to feature-matched controls, it is not known what set of cues or configurations are used to promote this selectivity. Many theories of perceptual organization have emphasized the figure-ground relationship as being especially important in object-level processing. In the present work we studied the role of perceptual organization in eliciting visual evoked potentials from the object selective LOC. To do this, we used two-region stimuli in which the regions were modulated at different temporal frequencies and were comprised of either symmetric or asymmetric arrangements. The asymmetric arrangement produced an unambiguous figure-ground relationship consistent with a smaller figure region surrounded by a larger background, while four different symmetric arrangements resulted in ambiguous figure-ground relationships but still possessed strong kinetic boundaries between the regions. The surrounded figure-ground arrangement evoked greater activity in the LOC relative to first-tier visual areas (V1-V3). Response selectivity in the LOC, however, was not present for the four different types of symmetric stimuli. These results suggest that kinetic texture boundaries alone are not sufficient to trigger selective processing in the LOC, but that the spatial configuration of a figure that is surrounded by a larger background is both necessary and sufficient to selectively activate the LOC.

Download full-text


Available from: Benoit R Cottereau, Mar 12, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lateral occipital cortex (LOC) activates selectively to images of intact objects versus scrambled controls, is selective for the figure-ground relationship of a scene, and exhibits at least some degree of invariance for size and position. Because of these attributes, it is considered to be a crucial part of the object recognition pathway. Here we show that human LOC is critically involved in perceptual decisions about object shape. High-density EEG was recorded while subjects performed a threshold-level shape discrimination task on texture-defined figures segmented by either phase or orientation cues. The appearance or disappearance of a figure region from a uniform background generated robust visual evoked potentials throughout retinotopic cortex as determined by inverse modeling of the scalp voltage distribution. Contrasting responses from trials containing shape changes that were correctly detected (hits) with trials in which no change occurred (correct rejects) revealed stimulus-locked, target-selective activity in the occipital visual areas LOC and V4 preceding the subject's response. Activity that was locked to the subjects' reaction time was present in the LOC. Response-locked activity in the LOC was determined to be related to shape discrimination for several reasons: shape-selective responses were silenced when subjects viewed identical stimuli but their attention was directed away from the shapes to a demanding letter discrimination task; shape-selectivity was present across four different stimulus configurations used to define the figure; LOC responses correlated with participants' reaction times. These results indicate that decision-related activity is present in the LOC when subjects are engaged in threshold-level shape discriminations.
    NeuroImage 10/2012; 67. DOI:10.1016/j.neuroimage.2012.10.044 · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Motion contrast contributes to the segregation of a two-dimensional figure from its background, yet many questions remain about its neural mechanisms. We measured steady-state visual evoked potential (SSVEP) responses to moving dot displays in which figure regions emerged from and disappeared into the background at a specific temporal frequency (1.2Hz, F1), based on regional differences of dot direction and global direction coherence. The goal was to measure the cortical response function across a range of motion contrast magnitudes. In two experiments using both a low channel count electrode array (Experiment 1) and a high density array (Experiment 2), we observed two distinct phase-locked evoked responses that were similar across motion contrast type. A response at 1.2Hz (1F1) increased in amplitude with increasing magnitudes of direction or coherence contrast. A response at 2.4Hz (2F1) increased in amplitude, but saturated at low levels of direction or coherence contrast. The two components showed different scalp distributions - the 1F1 was strongest along medial occipital channels, while the 2F1 was bilaterally distributed. Taken together, the studies suggest that figures defined by different types of motion contrast are processed by cortical systems with similar dynamics, and that there are separable neural systems devoted to (i) signaling the absolute magnitude of motion contrast and (ii) detecting when a figure defined by motion contrast appears and disappears from view.
    Vision research 07/2011; 51(19):2110-20. DOI:10.1016/j.visres.2011.07.015 · 2.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Scene segmentation depends on interaction between geometrical and photometric factors. It has been shown that reversals in contrast polarity at points of highest orientation discontinuity along closed contours significantly impair shape discrimination performance, while changes in contrast polarity at straight(er) contour segments do not have such deleterious effects (Spehar, 2002). Here we employ (semi) high resolution fMRI (1.5 mm × 1.5 mm × 1.5 mm) to investigate the neuronal substrate underlying these perception effects. Stimuli consisted of simple elements (a) squares with contrast reversals along straight segments; (b) squares with contrast reversals in the corner (highest orientation discontinuity); (c) L-Junctions with contrast reversals along the straight ends; (d) L-Junctions with contrast reversals in the corner. Element with contrast polarity reversals are easy to distinguish though appear geometrically equivalent. For squares with contrast polarity reversals only along straight lines we find significantly lower BOLD modulation compared to any of the control conditions, which show similar responses to each other. In the light of previous psychophysical work (Elder and Zucker, 1993; Spehar, 2002) we speculate that this effect is due to closure perception. We observe this across a wide range of areas on occipital cortex.
    Frontiers in Psychology 03/2011; 2:47. DOI:10.3389/fpsyg.2011.00047 · 2.80 Impact Factor