The impact of heat waves on mortality in 9 European cities: results from the EuroHEAT project

Department of Epidemiology, Regional Health Authority, Rome, Italy.
Environmental Health (Impact Factor: 2.71). 07/2010; 9:37. DOI: 10.1186/1476-069X-9-37
Source: PubMed

ABSTRACT The present study aimed at developing a standardized heat wave definition to estimate and compare the impact on mortality by gender, age and death causes in Europe during summers 1990-2004 and 2003, separately, accounting for heat wave duration and intensity.
Heat waves were defined considering both maximum apparent temperature and minimum temperature and classified by intensity, duration and timing during summer. The effect was estimated as percent increase in daily mortality during heat wave days compared to non heat wave days in people over 65 years. City specific and pooled estimates by gender, age and cause of death were calculated.
The effect of heat waves showed great geographical heterogeneity among cities. Considering all years, except 2003, the increase in mortality during heat wave days ranged from + 7.6% in Munich to + 33.6% in Milan. The increase was up to 3-times greater during episodes of long duration and high intensity. Pooled results showed a greater impact in Mediterranean (+ 21.8% for total mortality) than in North Continental (+ 12.4%) cities. The highest effect was observed for respiratory diseases and among women aged 75-84 years. In 2003 the highest impact was observed in cities where heat wave episode was characterized by unusual meteorological conditions.
Climate change scenarios indicate that extreme events are expected to increase in the future even in regions where heat waves are not frequent. Considering our results prevention programs should specifically target the elderly, women and those suffering from chronic respiratory disorders, thus reducing the impact on mortality.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Heat exposure is known to have a complex set of physiological effects on multiple organ systems, but current understanding of the health effects is mostly based on studies investigating a small number of prespecified health outcomes such as cardiovascular and respiratory diseases. To identify possible causes of hospital admissions during extreme heat events and to estimate their risks using historical data. Matched analysis of time series data describing daily hospital admissions of Medicare enrollees (23.7 million fee-for-service beneficiaries [aged ≥65 years] per year; 85% of all Medicare enrollees) for the period 1999 to 2010 in 1943 counties in the United States with at least 5 summers of near-complete (>95%) daily temperature data. Heat wave periods, defined as 2 or more consecutive days with temperatures exceeding the 99th percentile of county-specific daily temperatures, matched to non-heat wave periods by county and week. Daily cause-specific hospitalization rates by principal discharge diagnosis codes, grouped into 283 disease categories using a validated approach. Risks of hospitalization for fluid and electrolyte disorders, renal failure, urinary tract infection, septicemia, and heat stroke were statistically significantly higher on heat wave days relative to matched non-heat wave days, but risk of hospitalization for congestive heart failure was lower (P < .05). Relative risks for these disease groups were 1.18 (95% CI, 1.12-1.25) for fluid and electrolyte disorders, 1.14 (95% CI, 1.06-1.23) for renal failure, 1.10 (95% CI, 1.04-1.16) for urinary tract infections, 1.06 (95% CI, 1.00-1.11) for septicemia, and 2.54 (95% CI, 2.14-3.01) for heat stroke. Absolute risk differences were 0.34 (95% CI, 0.22-0.46) excess admissions per 100,000 individuals at risk for fluid and electrolyte disorders, 0.25 (95% CI, 0.12-0.39) for renal failure, 0.24 (95% CI, 0.09-0.39) for urinary tract infections, 0.21 (95% CI, 0.01-0.41) for septicemia, and 0.16 (95% CI, 0.10-0.22) for heat stroke. For fluid and electrolyte disorders and heat stroke, the risk of hospitalization increased during more intense and longer-lasting heat wave periods (P < .05). Risks were generally highest on the heat wave day but remained elevated for up to 5 subsequent days. Among older adults, periods of extreme heat were associated with increased risk of hospitalization for fluid and electrolyte disorders, renal failure, urinary tract infection, septicemia, and heat stroke. However, the absolute risk increase was small and of uncertain clinical importance.
    JAMA The Journal of the American Medical Association 12/2014; 312(24):2659-67. DOI:10.1001/jama.2014.15715 · 30.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As climate change increases the frequency and intensity of extreme heat events researchers and public health officials must work towards understanding the causes and outcomes of heat-related morbidity and mortality. While there have been many studies on both heat-related illness (HRI), there are fewer on heat-related morbidity than on heat-related mortality. To identify individual and environmental risk factors for hospitalizations and document patterns of household cooling. We performed a pooled cross-sectional analysis of secondary U.S. data, the Nationwide Inpatient Sample. Risk ratios were calculated from multivariable models to identify risk factors for hospitalizations. Hierarchical modeling was also employed to identify relationships between individual and hospital level predictors of hospitalizations. Patterns of air conditioning use were analyzed among the vulnerable populations identified. Hospitalizations due to HRI increased over the study period compared to all other hospitalizations. Populations at elevated risk for HRI hospitalization were blacks, males and all age groups above the age of 40. Those living in zip-codes in the lowest income quartile and the uninsured were also at an increased risk. Hospitalizations for HRI in rural and small urban clusters were elevated, compared to urban areas. Risk factors for HRI include age greater than 40, male gender and hospitalization in rural areas or small urban clusters. Our analysis also revealed an increasing pattern of HRI hospitalizations over time and decreased association between common comorbidities and heat illnesses which may be indicative of underreporting.
    PLoS ONE 03/2015; 10(3):e0118958. DOI:10.1371/journal.pone.0118958 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Global climate change is affecting health and mortality, particularly in vulnerable populations. High ambient temperatures decrease blood pressure (BP) in young and middle aged adults and may lead to orthostatic hypotension, increasing the risk of falls in older adults. The aim of this study was to evaluate the feasibility of a test protocol to investigate BP response and aerobic capacity of older adults in a hot indoor environment. BP response and aerobic capacity were assessed in 26 community-dwelling older women (median age 75.5 years) at a room temperature of either 20 °C or 30 °C. The protocol was well tolerated by all participants. In the 30 °C condition systolic and diastolic BP (median difference 10 and 8 mmHg, respectively) and distance walked in 6 min (median difference 29.3 m) were lower than in the 20 °C condition (all p < 0.01). Systolic BP decreased after standing up from a lying position in the 30 °C (17.4 mmHg) and 20 °C (14.2 mmHg) condition (both p < 0.001). In conclusion, the protocol is feasible in this cohort and should be repeated in older adults with poor physical performance and impaired cardio-vascular response mechanisms. Furthermore, aerobic capacity was reduced after exposure to hot environmental temperatures, which should be considered when recommending exercise to older people during the summer months.
    International Journal of Environmental Research and Public Health 12/2014; 11(12):12623-31. DOI:10.3390/ijerph111212623 · 1.99 Impact Factor

Full-text (4 Sources)

Available from
May 15, 2014