Cas utilizes Nck2 to activate Cdc42 and regulate cell polarization during cell migration in response to wound healing.

Department of Gastroenterology, Nagoya University Graduate School of Medicine, Japan.
FEBS Journal (Impact Factor: 4.25). 09/2010; 277(17):3502-13. DOI: 10.1111/j.1742-4658.2010.07752.x
Source: PubMed

ABSTRACT Integrin-mediated activation of Cdc42 is essential for cell polarization, whereas the integrin adaptor protein Cas is required for cell migration during wound healing. After phosphorylation on tyrosine residues, Cas recruits the adaptor proteins Crk and Nck to execute integrin-mediated signals. However, the mechanisms leading to Cdc42 activation and its relationship with Cas, Crk and Nck have not been elucidated clearly. In the present study, we demonstrate that Cas utilizes Nck2 to activate Cdc42 and induce cell polarization in response to wounding. By contrast, Cas recruits CrkII to activate Rac1 and promote the extension of cell protrusions needed for cell motility. These results indicate that Cas utilizes Nck2 and CrkII in a coordinated set of distinct pathways leading to cell migration.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In Caenorhabditis elegans gonad morphogenesis, the final U-shapes of the two hermaphrodite gonad arms are determined by migration of the distal tip cells (DTCs). These somatic cells migrate in opposite directions on the ventral basement membrane until specific extracellular cues induce turning from ventral to dorsal and then centripetally toward the midbody region on the dorsal basement membrane. To dissect the mechanism of DTC turning, we examined the role of a novel gene, F40F11.2/mig-38, whose depletion by RNAi results in failure of DTC turning so that DTCs continue their migration away from the midbody region. mig-38 is expressed in the gonad primordium, and expression continues throughout DTC migration where it acts cell-autonomously to control DTC turning. RNAi depletion of both mig-38 and ina-1, which encodes an integrin adhesion receptor, enhanced the loss of turning phenotype indicating a genetic interaction between these genes. Furthermore, the integrin-associated protein MIG-15/Nck-interacting kinase (NIK) works with MIG-38 to direct DTC turning as shown by mig-38 RNAi with the mig-15(rh80) hypomorph. These results indicate that MIG-38 enhances the role of MIG-15 in integrin-dependent DTC turning. Knockdown of talin, a protein that is important for integrin activation, causes the DTCs to stop migration prematurely. When both talin and MIG-38 were depleted by RNAi treatment, the premature stop phenotype was suppressed. This suppression effect was reversed upon additional depletion of MIG-15 or its binding partner NCK-1. These results suggest that both talin and the MIG-15/NCK-1 complex promote DTC motility and that MIG-38 may act as a negative regulator of the complex. We propose a model to explain the dual role of MIG-38 in motility and turning.
    Developmental Biology 06/2012; 368(2):404-14. · 3.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Cas family proteins, p130(Cas) (Cas) and NEDD9, are adaptor molecules that regulate cytoskeletal dynamics to promote multiple cellular processes, including migration, invasion, proliferation, and survival. Because these functions are also critical for tumor initiation, growth, and metastasis, Cas and NEDD9 are well positioned to contribute to these oncogenic processes. Indeed, mouse models of cancer show that these proteins function during multiple stages of disease progression. Furthermore, in many human cancers, high expression of Cas and NEDD9 is associated with advanced stage disease and is predictive of poor outcome. This review explores the contribution of Cas and NEDD9 during cellular transformation and neoplastic growth, tumor progression, metastasis, and the development of therapeutic resistance. Given these roles, Cas and NEDD9 may prove to be viable candidates for use as biomarkers and therapeutic targets.
    Genes & cancer 05/2012; 3(5-6):371-81.
  • [Show abstract] [Hide abstract]
    ABSTRACT: p130Cas/breast cancer anti-oestrogen resistance 1 (BCAR1) is a member of the Cas (Crk-associated substrate) family of adaptor proteins, which have emerged as key signalling nodes capable of interactions with multiple proteins, with important regulatory roles in normal and pathological cell function. The Cas family of proteins is characterised by the presence of multiple conserved motifs for protein-protein interactions, and by extensive tyrosine and serine phosphorylations. Recent studies show that p130Cas contributes to migration, cell cycle control and apoptosis. p130Cas is essential during early embryogenesis, with a critical role in cardiovascular development. Furthermore, p130Cas has been reported to be involved in the development and progression of several human cancers. p130Cas is able to perform roles in multiple processes due to its capacity to regulate a diverse array of signalling pathways, transducing signals from growth factor receptor tyrosine kinases, non-receptor tyrosine kinases, and integrins. In this review we summarise the current understanding of the structure, function, and regulation of p130Cas, and discuss the importance of p130Cas in both physiological and pathophysiological settings, with a focus on the cardiovascular system and cancer.
    Cellular signalling 12/2012; · 4.09 Impact Factor