Article

Cranial nerve injury after minor head trauma.

Department of Neurosurgery, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.
Journal of Neurosurgery (Impact Factor: 3.15). 09/2010; 113(3):547-55. DOI: 10.3171/2010.6.JNS091620
Source: PubMed

ABSTRACT There are no specific studies about cranial nerve (CN) injury following mild head trauma (Glasgow Coma Scale Score 14-15) in the literature. The aim of this analysis was to document the incidence of CN injury after mild head trauma and to correlate the initial CT findings with the final outcome 1 year after injury.
The authors studied 49 consecutive patients affected by minor head trauma and CN lesions between January 2000 and January 2006. Detailed clinical and neurological examinations as well as CT studies using brain and bone windows were performed in all patients. Based on the CT findings the authors distinguished 3 types of traumatic injury: no lesion, skull base fracture, and other CT abnormalities. Patients were followed up for 1 year after head injury. The authors distinguished 3 grades of clinical recovery from CN palsy: no recovery, partial recovery, and complete recovery.
Posttraumatic single nerve palsy was observed in 38 patients (77.6%), and multiple nerve injuries were observed in 11 (22.4%). Cranial nerves were affected in 62 cases. The most affected CN was the olfactory nerve (CN I), followed by the facial nerve (CN VII) and the oculomotor nerves (CNs III, IV, and VI). When more than 1 CN was involved, the most frequent association was between CNs VII and VIII. One year after head trauma, a CN deficit was present in 26 (81.2%) of the 32 cases with a skull base fracture, 12 (60%) of 20 cases with other CT abnormalities, and 3 (30%) of 10 cases without CT abnormalities.
Trivial head trauma that causes a minor head injury (Glasgow Coma Scale Score 14-15) can result in CN palsies with a similar distribution to moderate or severe head injuries. The CNs associated with the highest incidence of palsy in this study were the olfactory, facial, and oculomotor nerves. The trigeminal and lower CNs were rarely damaged. Oculomotor nerve injury can have a good prognosis, with a greater chance of recovery if no lesion is demonstrated on the initial CT scan.

0 Bookmarks
 · 
146 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The authors report the rare and first documented case of concomitant microvascular decompression of trigeminal, facial and glossopharyngeal nerves for the management of intractable to medical therapy acute onset of trigeminal neuralgia, facial paresis and dysphagia after mild head injury.
    British Journal of Neurosurgery 07/2013; · 0.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Olfactory dysfunction is a common disorder, especially in elderly people. From the etiological point of view a differentiation is made between sinunasal, traumatic and non-sinunasal causes of dysosmia. Olfactory disorders are often observed in neurodegenerative diseases, especially in patients with Parkinson's disease or Alzheimer's disease. Apart from an extensive medical history important diagnostic tools are a complete ear nose and throat (ENT) examination including nasal endoscopy and olfactory testing, for example, with "sniffin' sticks". For diagnostic purposes modern imaging procedures, such as magnetic resonance imaging (MRI) are becoming more and more important. For testing children, olfactory testing needs to be adapted and depending on the etiology, olfactory training, antiphlogistic and surgical procedures are the most promising therapeutic approaches. In cases of intracranial causes of dysosmia neurosurgeons should know and respect the anatomical structures of the olfactory signal pathway, not least for the long-term prognosis.
    HNO 11/2013; 61(11):975-86. · 0.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Traumatic brain injury (TBI) can cause olfactory loss. The aim of this cross-sectional and prospective study was to determine the prevalence of olfactory loss among 110 patients with TBI within 3 months after the trauma. In 81 patients ("cross-sectional"-group), olfactory function could be measured using the validated "Sniffin' Sticks" test for odor threshold and odor identification. In addition, the prospective change of olfactory function was studied in 36 patients ("follow-up"-group) by means of a validated odor threshold, discrimination and identification test. Olfactory function was significantly better in patients with TBI I° compared to individuals with TBI II° and III°. Clinically significant improvement of olfactory function was found in 36 % of the patients, most frequently during the first 6 months after the injury, in a median follow-up interval of 21 months. TBI I° has in general no major effect on olfaction. In contrast, patients with TBI II° and III° exhibit smell loss in 57 %. Chances for olfactory recovery were highest within the first 6 months after the trauma.
    Archives of Oto-Rhino-Laryngology 09/2013; · 1.29 Impact Factor