Preparation and evaluation of fexofenadine microemulsions for intranasal delivery

College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
International Journal of Pharmaceutics (Impact Factor: 3.79). 08/2010; 395(1-2):309-16. DOI: 10.1016/j.ijpharm.2010.05.041
Source: PubMed

ABSTRACT To enhance the solubility and bioavailability of poorly absorbable fexofenadine, microemulsion system composed of oil, surfactant and co-surfactant was developed for intranasal delivery. Phase behavior, particle size, viscosity and solubilization capacity of the microemulsion system were characterized. Histopathology and in vivo nasal absorption of the optimized microemulsion formulations were also investigated in rats. A single isotropic region was found in the pseudo-ternary phase diagrams developed at various ratios with Lauroglycol 90 as oil, Labrasol as surfactant and Plurol Oleique CC49 or its mixture with PEG-400 (1:1) as cosurfactant. An increase in the microemulsion region in pseudo-ternary phase systems was observed with increased surfactant concentration. The optimized microemulsion formulations showed higher solubulization of fexofenadine, i.e., F1 (22.64 mg/mL) and F2 (22.98 mg/mL), compared to its intrinsic water solubility (1.51 mg/mL). Nasal absorption of fexofenadine from these microemulsions was found to be fairly rapid. Tmax was observed within 5 min after intranasal administration at 1.0 mg/kg dose, and the absolute bioavailability (0-4 h) was about 68% compared to the intravenous administration in rats. Our results suggested that these microemulsion formulations could be used as an effective intranasal dosage form for the rapid-onset delivery of fexofenadine

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to improve the solubility and the stability and oral uptake of curcumin by developing an o/w microemulsion, using food grade components. Three microemulsions were developed and characterized, stabilized by non ionic surfactants Cremophor EL, Tween 20, Tween 80 or Lecitin and containing a variety of oils, namely olive oil, wheat germ oil, vitamin E. Chemical and physical stabilities of three systems was also evaluated within two months. The oral absorption of curcumin from the best microemulsion was investigated in vitro using parallel artificial membrane permeability assay (PAMPA). The optimal formulation consisted of 3.3 g/100 g of vitamin E, 53.8 g/100 g of Tween 20, 6.6 g/100 g of ethanol and water (36.3 g/100 g), with a maximum solubility of curcumin up to 14.57 mg/ml and a percentage of permeation through the artificial membrane of about 70%.
    Lebensmittel-Wissenschaft und-Technologie 11/2014; 59(1):148–155. DOI:10.1016/j.lwt.2014.06.009 · 2.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: The aim of the present work was to investigate the efficacy of nanostructured lipid carriers (NLCs) to enhance the brain targeting of lamotrigine (LMT) following intranasal (IN) administration. Methods: Formulation was optimized using four-factor three levels Box- Behnken design to establish the functional relationships between variables on responses, that is, particle size, entrapment efficiency (EE) and percentage cumulative drug release of LMT-loaded NLCs. NLCs were evaluated for particle size, surface morphology, %EE and in vitro release and ex vivo permeation. The developed formulation was subjected to stability study, in vivo efficacy and scintigraphic study in Wistar rat model. Results: The NLCs had a mean particle size of 151.6 ± 7.6 nm, polydispersity index of 0.249 ± 0.035, zeta potential of 11.75 ± 2.96 mV and EE of 96.64 ± 4.27%. The drug release from NLCs followed Fickian diffusion with a flux value of 11.73 μgcm(-2)h(-1). Sustained drug concentration was obtained in NLCs carrying LMT after IN administration after 24 h. γ scintigraphy studies further proved high accumulation of drug in brain. Conclusion: Hence we can conclude that IN administration of LMT NLCs in rats is able to maintain higher brain concentration of LMT compared to IN and oral drug solution.
    Expert Opinion on Drug Delivery 08/2014; 12(2):1-14. DOI:10.1517/17425247.2014.945416 · 4.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objectives This study aims to evaluate the absorption-enhancing effects of Gelucire 44/14 on the pulmonary absorption of different poorly absorbable drugs and relative mechanism of action.Methods Absorption-enhancing effect of Gelucire 44/14 were examined by an in-vivo pulmonary absorption experiment in rats, and the membrane toxicity of Gelucire 44/14 was evaluated by measuring levels of protein and dehydrogenase (LDH) in the bronchoalveolar lavage fluid (BALF) and morphological observation.Key findingsPulmonary absorptions of fluorescein isothiocyanate-dextrans, insulin and calcitonin were enhanced by Gelucire 44/14 (0.1–2.0%, w/v) in a concentration-dependent manner, and the maximal absorption-enhancing effect was obtained when the concentration of Gelucire 44/14 increased to 2.0% (w/v). Furthermore, Gelucire 44/14 neither increase the levels of protein and LDH in BALF nor change morphology of lung compared with control group. In addition, a well correlation between the absorption-enhancing effect and surface tension of insulin solution in the presence of Gelucire 44/14 was observed, suggesting Gelucire 44/14-mediated decrease in the surface tension of the gas-liquid interface in alveolar tissue was possible one of the improving mechanisms of Gelucire 44/14.Conclusion Gelucire 44/14 was a potential and safe absorption enhancer for improving the absorption of poorly absorbable drugs including insulin and calcitonin by pulmonary delivery.
    06/2014; 66(10). DOI:10.1111/jphp.12274

Full-text (2 Sources)

Available from
May 26, 2014