Crystal structure of a truncated urease accessory protein UreF from Helicobacter pylori

Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada.
Proteins Structure Function and Bioinformatics (Impact Factor: 2.63). 10/2010; 78(13):2839-48. DOI: 10.1002/prot.22802
Source: PubMed

ABSTRACT Urease plays a central role in the pathogenesis of Helicobacter pylori in humans. Maturation of this nickel metalloenzyme in bacteria requires the participation of the accessory proteins UreD (termed UreH in H. pylori), UreF, and UreG, which form sequential complexes with the urease apoprotein as well as UreE, a metallochaperone. Here, we describe the crystal structure of C-terminal truncated UreF from H. pylori (residues 1-233), the first UreF structure to be determined, at 1.55 A resolution using SAD methods. UreF forms a dimer in vitro and adopts an all-helical fold congruent with secondary structure prediction. On the basis of evolutionary conservation analysis, the structure reveals a probable binding surface for interaction with other urease components as well as key conserved residues of potential functional relevance.

Download full-text


Available from: Robert P Hausinger, Sep 28, 2015
13 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Helicobacter pylori is a striking example of adaptation of a bacterium to a very peculiar niche, the human stomach. Despite being a neutralophile, a sophisticated control of gene expression allows it to live and to proliferate in an environment that cycles from nearly neutral to very acidic. Despite the numerous studies performed on the mechanisms of acid adaptation, the physiological function of a large part of the genes products that are up-regulated or down-regulated is often not clear, in particular in the context of the response of the bacterium to an acidic stress. In this review, we discuss the molecular and functional aspects of some of the proteins that are commonly found overexpressed during the acid stress. © 2010 IUBMB IUBMB Life, 62(10): 715–723, 2010
    International Union of Biochemistry and Molecular Biology Life 10/2010; 62(10):spcone. DOI:10.1002/iub.397 · 3.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The soybean genome duplicated ∼14 and 45 million years ago and has many paralogous genes, including those in urease activation (emplacement of Ni and CO(2) in the active site). Activation requires the UreD and UreF proteins, each encoded by two paralogues. UreG, a third essential activation protein, is encoded by the single-copy Eu3, and eu3 mutants lack activity of both urease isozymes. eu2 has the same urease-negative phenotype, consistent with Eu2 being a single-copy gene, possibly encoding a Ni carrier. Unexpectedly, two eu2 alleles co-segregated with missense mutations in the chromosome 2 UreF paralogue (Ch02UreF), suggesting lack of expression/function of Ch14UreF. However, Ch02UreF and Ch14UreF transcripts accumulate at the same level. Further, it had been shown that expression of the Ch14UreF ORF complemented a fungal ureF mutant. A third, nonsense (Q2*) allelic mutant, eu2-c, exhibited 5- to 10-fold more residual urease activity than missense eu2-a or eu2-b, though eu2-c should lack all Ch02UreF protein. It is hypothesized that low-level activation by Ch14UreF is 'spoiled' by the altered missense Ch02UreF proteins ('epistatic dominant-negative'). In agreement with active 'spoiling' by eu2-b-encoded Ch02UreF (G31D), eu2-b/eu2-c heterozygotes had less than half the urease activity of eu2-c/eu2-c siblings. Ch02UreF (G31D) could spoil activation by Chr14UreF because of higher affinity for the activation complex, or because Ch02UreF (G31D) is more abundant than Ch14UreF. Here, the latter is favoured, consistent with a reported in-frame AUG in the 5' leader of Chr14UreF transcript. Translational inhibition could represent a form of 'functional divergence' of duplicated genes.
    Journal of Experimental Botany 03/2011; 62(10):3599-608. DOI:10.1093/jxb/err054 · 5.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transition metals are both essential to enzymatic catalysis and limited in environmental availability. These two biological facts have together driven organisms to evolve mechanisms for selective metal ion sensing and utilization. Changes in metal ion concentrations are perceived by metal-dependent transcription factors and transduced into appropriate cellular responses, which regulate the machineries of competitive metal ion homeostasis and metallo-enzyme activation. The intrinsic toxicity of the majority of metal ions further creates a need for regulated intracellular trafficking, which is carried out by specific chaperones. The Ni(2+)-dependent urease enzymatic system serves as a paradigm for studying the strategies that cells use to handle an essential, yet toxic, metal ion. Although the discovery of urease as the first biological system for which nickel is essential for activity dates to 1975, the rationale for Ni(2+) selection, as well as the cascade of events involving metal-dependent gene regulation and protein-protein interactions leading to enzyme activation, have yet to be fully unraveled. The past 14 years since the Account by Hausinger and co-workers (Karplus, P. A.; Pearson, M. A.; Hausinger, R. P. Acc. Chem. Res. 1997, 30, 330-337) have witnessed impressive achievements in the understanding of the biological chemistry of Ni(2+) in the urease system. In our Account, we discuss more recent advances in the comprehension of the specific role of Ni(2+) in the catalysis and the interplay between Ni(2+) and other metal ions, such as Zn(2+) and Fe(2+), in the metal-dependent enzyme activity. Our discussion focuses on work carried out in our laboratory. In particular, the structural features of the enzyme bound to inhibitors, substrate analogues, and transition state or intermediate analogues have shed light on the catalytic mechanism. Structural and functional information has been correlated to understand the Ni(2+) sensing effected by NikR, a nickel-dependent transcription factor. The urease activation process, involving insertion of Ni(2+) into the urease active site, has been in part dissected and analyzed through the investigation of the molecular properties of the accessory proteins UreD, UreF, and UreG. The intracellular trafficking of Ni(2+) has been rationalized through a deeper understanding of the structural and metal-binding properties of the metallo-chaperone UreE. All the while, a number of key general concepts have been revealed and developed. These include an understanding of (i) the overall ancillary role of Zn(2+) in nickel metabolism, (ii) the intrinsically disordered nature of the GTPase responsible for coupling the energy consumption to the carbon dioxide requirement for the urease activation process, and (iii) the role of the accessory proteins regulating this GTPase activity.
    Accounts of Chemical Research 05/2011; 44(7):520-30. DOI:10.1021/ar200041k · 22.32 Impact Factor
Show more