Neonatal exposure to MK-801, an N-methyl-D-aspartate receptor antagonist, enhances methamphetamine-induced locomotion and disrupts sensorimotor gating in pre- and postpubertal rats.

Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Sugitani, Toyama, Japan.
Brain research (Impact Factor: 2.46). 09/2010; 1352:223-30. DOI: 10.1016/j.brainres.2010.07.013
Source: PubMed

ABSTRACT Administration of non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists (e.g. phencyclidine, MK-801) has been shown to elicit behavioral abnormalities related to symptoms of schizophrenia, such as spontaneous locomotor activity and impaired sensorimotor gating, as represented by deficits of prepulse inhibition (PPI). We sought to determine whether transient blockade of NMDA receptors at the neonatal stage would produce dopamine supersensitivity around puberty, as manifested by these behavioral measures. For this purpose, we examined methamphetamine (MAP; 1.0mg/kg, i.p.)-induced locomotor activity and PPI in pre- (postnatal day; PD 36-38) or post- (PD 64-66) puberty in rats administered MK-801 (0.2mg/kg/day, s.c.) between PD 7 and PD 10. Neonatal MK-801 treatment augmented MAP-induced hyperlocomotion especially in the early adulthood, whereas spontaneous locomotor activity and rearing were not changed. MK-801 administration also disrupted PPI without affecting startle amplitudes around puberty. These findings suggest that transient exposure to MK-801 in the neonatal stage causes exaggerated dopamine transmission and cognitive deficits, particularly in the post-puberty stage.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is considered as a "neurodegenerative" and "neurodevelopmental" disorder, the pathophysiology of which may include hypofunction of the N-methyl-d-aspartate receptor (NMDA-R) or subsequent pathways. Accordingly, administration of NMDA-R antagonists to rodents during the perinatal period may emulate some core pathophysiological aspects of schizophrenia. The effect of 4-day (postnatal day; PD 7-10) administration of MK-801, a selective NMDA-R antagonist, on gene expression in the medial prefrontal cortex (mPFC), hippocampus, and amygdala was evaluated using quantitative polymerase chain reaction methods. Specifically, we sought to determine whether genes related to Glu transmissions, for example those encoding for NMDA-Rs, metabotropic Glu receptors (mGluRs), or Glu transporters, were altered by neonatal treatment with MK-801. Model rats showed downregulation of the mGluR3 subtype in the mPFC around puberty, especially at PD 35 in response to MK-801 or during ontogenesis without pharmacological manipulations. Genes encoding for other mGluRs subtypes, that is NMDA-Rs and Glu transporters, were not affected by the neonatal insult. These results suggest that NMDA-R antagonism in the early course of development modulates the expression of mGluR3 in mPFC around puberty. Thus, mGluR3 may serve as a potential target to prevent the onset and progression of schizophrenia. Synapse, 2014. © 2014 Wiley Periodicals, Inc.
    Synapse 02/2014; · 2.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The N-Methyl-D-Aspartate (NMDA) receptor is expressed abundantly in the brain and plays an important role in neuronal development, learning and memory, neurodegenerative diseases, and neurogenesis. In this study, we evaluated the effects of NMDA receptor blockade during the early neurodevelopmental period on exploratory locomotion, anxiety-like behaviors and cognitive functions of adolescent Wistar rats. NMDA receptor hypofunction was induced 7-10 days after birth using MK-801 in rats (0.25 mg/kg twice a day for 4 days via intraperitoneal injection). The open-field (OF), elevated plus maze (EPM) and passive avoidance (PA) tests were used to evaluate exploratory locomotion, anxiety-like behaviors and cognitive functions. In the OF test, MK-801 caused an increase in locomotion behavior (p < 0.01) and in the frequency of rearing (p < 0.05). In the EPM test, MK-801 treatment increased the time spent in the open arms, the number of open arm entries and the amount of head dipping (p < 0.01). MK-801 treatment caused no statistical difference compared to the control group in the PA test (p > 0.05). Chronic NMDA receptor blockade during the critical period of maturation for the glutamatergic brain system (postnatal days 7-10) produces locomotor hyperactivity and decreased anxiety levels, but has no significant main effect on cognitive function during adolescence.
    Neurochemical Research 03/2013; · 2.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The elevated plus maze (EPM) is an animal model of anxiety used to test the effects of anxioselective drugs. The loss of the anxiolytic effect of drugs during the second exposure to the EPM is called the "one trial tolerance" (OTT) phenomenon. The present study was designed to investigate the relationship between the OTT phenomenon and N-methyl-D-aspartate (NMDA) receptor blockade in the early developmental period of rats. NMDA receptor blockade was accomplished using MK-801 treatment given between postnatal days 20-30. Beginning on postnatal day 20, the rats were subcutaneously injected with MK-801 twice a day at the nape of the neck for a period of 10 days (0.25 mg/kg). Increased open arm exploration was observed in MK-801-treated rats during trial 1 (p = 0.001) and trial 2 (p = 0.003). The rats spent less time in the closed arms as compared to the saline animals in trial 1 (p = 0.006), and this time decreased further in trial 2 (p = 0.02). The fecal boli of the MK-801 group was decreased in trial 1 as compared to the saline group (p = 0.01), but was not significantly different in trial 2 (p = 0.08). In conclusion, NMDA receptor blockade using MK-801 produced an anxiolytic-like effect in trials 1 and 2. Furthermore, OTT was not affected by NMDA receptor blockade.
    Neurochemical Research 04/2013; · 2.13 Impact Factor