Neonatal exposure to MK-801, an N-methyl-D-aspartate receptor antagonist, enhances methamphetamine-induced locomotion and disrupts sensorimotor gating in pre- and postpubertal rats.

Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Sugitani, Toyama, Japan.
Brain research (Impact Factor: 2.83). 09/2010; 1352:223-30. DOI: 10.1016/j.brainres.2010.07.013
Source: PubMed

ABSTRACT Administration of non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists (e.g. phencyclidine, MK-801) has been shown to elicit behavioral abnormalities related to symptoms of schizophrenia, such as spontaneous locomotor activity and impaired sensorimotor gating, as represented by deficits of prepulse inhibition (PPI). We sought to determine whether transient blockade of NMDA receptors at the neonatal stage would produce dopamine supersensitivity around puberty, as manifested by these behavioral measures. For this purpose, we examined methamphetamine (MAP; 1.0mg/kg, i.p.)-induced locomotor activity and PPI in pre- (postnatal day; PD 36-38) or post- (PD 64-66) puberty in rats administered MK-801 (0.2mg/kg/day, s.c.) between PD 7 and PD 10. Neonatal MK-801 treatment augmented MAP-induced hyperlocomotion especially in the early adulthood, whereas spontaneous locomotor activity and rearing were not changed. MK-801 administration also disrupted PPI without affecting startle amplitudes around puberty. These findings suggest that transient exposure to MK-801 in the neonatal stage causes exaggerated dopamine transmission and cognitive deficits, particularly in the post-puberty stage.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is a complex mental health disorder with positive, negative and cognitive symptom domains. Approximately one third of patients are resistant to currently available medication. New therapeutic targets and a better understanding of the basic biological processes that drive pathogenesis are needed in order to develop therapies that will improve quality of life for these patients. Several drugs that act on neurotransmitter systems in the brain have been suggested to model aspects of schizophrenia in animals and in man. In this paper, we selectively review findings from dopaminergic, glutamatergic, serotonergic, cannabinoid, GABA, cholinergic and kappa opioid pharmacological drug models to evaluate their similarity to schizophrenia. Understanding the interactions between these different neurotransmitter systems and their relationship with symptoms will be an important step towards building a coherent hypothesis for the pathogenesis of schizophrenia.
    Therapeutic Advances in Psychopharmacology 02/2015; 5(1):43-58. DOI:10.1177/2045125314557797 · 1.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic neonatal blockade of N-methyl-D-aspartate (NMDA) receptors produces various abnormal behaviors in adulthood animals. This study investigated the effects of neonatal treatment chronically with MK-801 in rats on the preexposure-induced retardation of CS-US association, i.e. latent inhibition (LI), of two aversive classical conditioning tasks in adulthood. In conditioned taste aversion (CTA) using sucrose taste and LiCl, neonatal chronic MK-801 (0.4mg/kg twice/day) treatment attenuated the inhibitory effect of sucrose preexposure on the aversive conditioning, although the treatment did not affect CTA conditioning itself. On the other hand, in conditioned emotional response (CER) using tone and electrical foot shock, rats neonatally treated with MK-801 showed the same degree of inhibitory effect of tone preexposure on the aversive conditioning compared with neonatally vehicle-treated rats, and also showed the same level of CER conditioning itself. Thus, the effect of chronic neonatal blockade of NMDA receptors on the LI of classical conditioning in adulthood was differentiated by the task employed. Results suggest that LI of CTA paradigm compared with that of CER is more sensitive to abnormal development after chronic neonatal blockade of NMDA receptors as an index of cognitive/attentional deficits caused by the treatment. Copyright © 2015. Published by Elsevier B.V.
    Behavioural Brain Research 01/2015; 283. DOI:10.1016/j.bbr.2015.01.029 · 3.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, the effects of 5-HT4 receptors of the CA1 on MK801-induced amnesia and hyperlocomotion were examined. One-trial step-down method was used to assess memory retention and then, the hole-board method to assess exploratory behaviors. The results showed that post-training intra-CA1 administration of RS67333 (62.5 and 625ng/mouse) and RS23597 (1 and 10ng/mouse) decreased memory consolidation, but it did not alter head-dip counts, head-dip latency and locomotor activity. Similarly, MK801 (0.5 and 1μg/mouse) decreased memory consolidation, but had no effect on head-dip counts and head-dip latency. Interestingly, it increased locomotor activity. The results also showed that post-training intra-CA1 injection of a sub-threshold dose of RS67333 (6.25ng/mouse) or RS23597 (0.1ng/mouse) could heighten MK801 induced amnesia and decrease locomotor activity, but it did not alter head-dip counts and head-dip latency. In conclusion, our findings suggest that the CA1 5-HT4 receptors are involved in MK801-induced amnesia and hyperlocomotion. Copyright © 2014. Published by Elsevier Ireland Ltd.
    Neuroscience Letters 12/2014; 587. DOI:10.1016/j.neulet.2014.12.019 · 2.06 Impact Factor