Selective Association of Peroxiredoxin 1 with Genomic DNA and COX-2 Upstream Promoter Elements in Estrogen Receptor Negative Breast Cancer Cells

Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba R3E0V9, Canada.
Molecular biology of the cell (Impact Factor: 5.98). 09/2010; 21(17):2987-95. DOI: 10.1091/mbc.E10-02-0160
Source: PubMed

ABSTRACT In a search for proteins differentially cross-linked to DNA by cisplatin or formaldehyde in normal breast epithelial and breast cancer cell lines, we identified peroxiredoxin 1 (PRDX1) as a protein preferentially cross-linked to DNA in estrogen receptor negative (ER-) MDA-MB-231 but not in estrogen receptor positive (ER+) MCF7 breast cancer cells. Indirect immunofluorescence microscopic analyses showed that PRDX1 was located in the cytoplasm and nucleus of normal and breast cancer cells, with nuclear PRDX1 associated with promyelocytic leukemia protein bodies. We demonstrated that PRDX1 association with the transcription factor nuclear factor-kappaB (NF-kappaB) in MDA-MB-231 but not in MCF7 cells contributed to PRDX1-selective recruitment to MDA-MB-231 genomic DNA. Furthermore, PRDX1 was associated with the cyclooxygenase (COX)-2 upstream promoter region at sites occupied by NF-kappaB in ER- but not in ER+ breast cancer cells. PRDX1 knockdown attenuated COX-2 expression by reducing NF-kappaB occupancy at its upstream promoter element in MDA-MB-231 but not in MCF7 cells. A phosphorylated form of PRDX1 was only present in ER- breast cancer cells. Because PRDX1 phosphorylation is known to inhibit its peroxidase activity and to promote PRDX1 oligomerization, we propose that PRDX1 acts as a chaperone to enhance the transactivation potential of NF-kappaB in ER- breast cancer cells.

Download full-text


Available from: James Davie, Jul 30, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Malaria parasites are subjected to high levels of oxidative stress during their development inside erythrocytes and the ability of the parasite to defend itself against this assault is critical to its survival. Therefore, Plasmodium possesses an effective antioxidant defense system that could potentially be used as a target for the development of inhibitor-based therapy. We have identified an unusual peroxiredoxin protein that localizes to the nucleus of Plasmodium falciparum and have renamed it PfnPrx (PF10_0268, earlier called MCP1). Our work reveals that PfnPrx has a broad specificity of substrate being able to utilize thioredoxin and glutaredoxin as reductants and having the ability to reduce simple and complex peroxides. Intriguingly, chromatin immunoprecipitation followed by deep sequencing reveals that the enzyme associates with chromatin in a genome-wide manner with a slight enrichment in coding regions. Our results represent the first description of a dedicated chromatin-associated peroxiredoxin and potentially represent an ingenious way by which the parasite can survive the highly oxidative environment within its human host.
    Journal of Biological Chemistry 03/2011; 286(13):11746-55. DOI:10.1074/jbc.M110.198499 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peroxiredoxins possess thioredoxin or glutathione peroxidase and chaperone-like activities and thereby protect cells from oxidative insults. Recent studies, however, reveal additional functions of peroxiredoxins in gene expression and inflammation-related biological reactions such as tissue repair, parasite infection and tumor progression. Notably, peroxiredoxin 1, the major mammalian peroxiredoxin family protein, directly interacts with transcription factors such as c-Myc and NF-κB in the nucleus. Additionally, peroxiredoxin 1 is secreted from some cells following stimulation with TGF-β and other cytokines and is thus present in plasma and body fluids. Peroxiredoxin 1 is now recognized as one of the pro-inflammatory factors interacting with toll-like receptor 4, which triggers NF-κB activation and other signaling pathways to evoke inflammatory reactions. Some cancer cells release peroxiredoxin 1 to stimulate toll-like receptor 4-mediated signaling for their progression. Interestingly, peroxiredoxins expressed in protozoa and helminth may modulate host immune responses partly through toll-like receptor 4 for their survival and progression in host. Extracellular peroxiredoxin 1 and peroxiredoxin 2 are known to enhance natural killer cell activity and suppress virus-replication in cells. Peroxiredoxin 1-deficient mice show reduced antioxidant activities but also exhibit restrained tissue inflammatory reactions under some patho-physiological conditions. Novel functions of peroxiredoxins in inflammation, cancer and innate immunity are the focus of this review.
    Journal of Clinical Biochemistry and Nutrition 03/2012; 50(2):91-105. DOI:10.3164/jcbn.11-109 · 2.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer is the second most fatal cancer in American women. To increase the life expectancy of patients with breast cancer new diagnostic and prognostic biomarkers and drug targets must be identified. A change in the glycosylation on a glycoprotein often causes a change in the function of that glycoprotein; such a phenomenon is correlated with cancerous transformation. Thus, glycoproteins in human breast cancer estrogen receptor positive (ER+) tissues and those in the more advanced stage of breast cancer, estrogen receptor negative (ER-) tissues, were compared. Glycoproteins showing differences in glycosylation were examined by 2-dimensional gel electrophoresis with double staining (glyco- and total protein staining) and identified by reversed-phase nano-liquid chromatography coupled with a hybrid linear quadrupole ion trap/ Fourier transform ion cyclotron resonance mass spectrometer. Among the identified glycosylated proteins are alpha 1 acid glycoprotein, alpha-1-antitrypsin, calmodulin, and superoxide dismutase mitochondrial precursor that were further verified by Western blotting for both ER+ and ER- human breast tissues. Results show the presence of a possible glycosylation difference in alpha-1-antitrypsin, a potential tumor-derived biomarker for breast cancer progression, which was expressed highest in the ER- samples.
    Journal of Cancer 06/2012; 3:269-84. DOI:10.7150/jca.4592 · 2.64 Impact Factor
Show more