Article

A study of long-term potentiation in transgenic mice over-expressing mutant forms of both amyloid precursor protein and presenilin-1

MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, UK.
Molecular Brain (Impact Factor: 4.35). 07/2010; 3(1):21. DOI: 10.1186/1756-6606-3-21
Source: PubMed

ABSTRACT Synaptic transmission and long-term potentiation (LTP) in the CA1 region of hippocampal slices have been studied during ageing of a double transgenic mouse strain relevant to early-onset familial Alzheimer's disease (AD). This strain, which over-expresses both the 695 amino acid isoform of human amyloid precursor protein (APP) with K670N and M671L mutations and presenilin 1 with the A246E mutation, has accelerated amyloidosis and plaque formation. There was a decrease in synaptic transmission in both wildtype and transgenic mice between 2 and 9 months of age. However, preparing slices from 14 month old animals in kynurenic acid (1 mM) counteracted this age-related deficit. Basal transmission and paired-pulse facilitation was similar between the two groups at all ages (2, 6, 9 and 14 months) tested. Similarly, at all ages LTP, induced either by theta burst stimulation or by multiple tetani, was normal. These data show that a prolonged, substantially elevated level of Abeta are not sufficient to cause deficits in the induction or expression of LTP in the CA1 hippocampal region.

Full-text

Available from: Robin Morton, May 29, 2015
0 Followers
 · 
148 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the past years, major efforts have been made to understand the genetics and molecular pathogenesis of Alzheimer's disease (AD), which has been translated into extensive experimental approaches aimed at slowing down or halting disease progression. Advances in transgenic (Tg) technologies allowed the engineering of different mouse models of AD recapitulating a range of AD-like features. These Tg models provided excellent opportunities to analyze the bases for the temporal evolution of the disease. Several lines of evidence point to synaptic dysfunction as a cause of AD and that synapse loss is a pathological correlate associated with cognitive decline. Therefore, the phenotypic characterization of these animals has included electrophysiological studies to analyze hippocampal synaptic transmission and long-term potentiation, a widely recognized cellular model for learning and memory. Transgenic mice, along with non-Tg models derived mainly from exogenous application of Aβ, have also been useful experimental tools to test the various therapeutic approaches. As a result, numerous pharmacological interventions have been reported to attenuate synaptic dysfunction and improve behavior in the different AD models. To date, however, very few of these findings have resulted in target validation or successful translation into disease-modifying compounds in humans. Here, we will briefly review the synaptic alterations across the different animal models and we will recapitulate the pharmacological strategies aimed at rescuing hippocampal plasticity phenotypes. Finally, we will highlight intrinsic limitations in the use of experimental systems and related challenges in translating preclinical studies into human clinical trials.
    Molecular Neurobiology 08/2012; 46(3). DOI:10.1007/s12035-012-8324-3 · 5.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spatial learning and memory in rodents represent close equivalents of human episodic declarative memory, which is especially sensitive to cerebral aging, neurodegeneration, and various neuropsychiatric disorders. Many tests and protocols are available for use in laboratory rodents, but Morris water maze and radial-arm maze remain the most widely used as well as the most valid and reliable spatial tests. Telencephalic neurocircuitry that plays functional roles in spatial learning and memory includes hippocampus, dorsal striatum and medial prefrontal cortex. Prefrontal-hippocampal circuitry comprises the major associative system in the rodent brain, and is critical for navigation in physical space, whereas interconnections between prefrontal cortex and dorsal striatum are probably more important for motivational or goal-directed aspects of spatial learning. Two major forms of synaptic plasticity, namely long-term potentiation, a lasting increase in synaptic strength between simultaneously activated neurons, and long-term depression, a decrease in synaptic strength, have been found to occur in hippocampus, dorsal striatum and medial prefrontal cortex. These and other phenomena of synaptic plasticity are probably crucial for the involvement of telencephalic neurocircuitry in spatial learning and memory. They also seem to play a role in the pathophysiology of two brain pathologies with episodic declarative memory impairments as core symptoms, namely Alzheimer's disease and schizophrenia. Further research emphasis on rodent telencephalic neurocircuitry could be relevant to more valid and reliable preclinical research on these most devastating brain disorders. Copyright © 2015. Published by Elsevier B.V.
    Brain Research 01/2015; DOI:10.1016/j.brainres.2015.01.015 · 2.83 Impact Factor
  • European Neuropsychopharmacology 09/2011; 21. DOI:10.1016/S0924-977X(11)70596-X · 5.40 Impact Factor