Risk factors for hospitalisation and poor outcome with pandemic A/H1N1 influenza: United Kingdom first wave (May-September 2009)

Division of Epidemiology and Public Health, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham NG5 1PB, UK.
Thorax (Impact Factor: 8.29). 07/2010; 65(7):645-51. DOI: 10.1136/thx.2010.135210
Source: PubMed


BACKGROUNd: During the first wave of pandemic H1N1 influenza in 2009, most cases outside North America occurred in the UK. The clinical characteristics of UK patients hospitalised with pandemic H1N1 infection and risk factors for severe outcome are described.
A case note-based investigation was performed of patients admitted with confirmed pandemic H1N1 infection.
From 27 April to 30 September 2009, 631 cases from 55 hospitals were investigated. 13% were admitted to a high dependency or intensive care unit and 5% died; 36% were aged <16 years and 5% were aged > or = 65 years. Non-white and pregnant patients were over-represented. 45% of patients had at least one underlying condition, mainly asthma, and 13% received antiviral drugs before admission. Of 349 with documented chest x-rays on admission, 29% had evidence of pneumonia, but bacterial co-infection was uncommon. Multivariate analyses showed that physician-recorded obesity on admission and pulmonary conditions other than asthma or chronic obstructive pulmonary disease (COPD) were associated with a severe outcome, as were radiologically-confirmed pneumonia and a raised C-reactive protein (CRP) level (> or = 100 mg/l). 59% of all in-hospital deaths occurred in previously healthy people.
Pandemic H1N1 infection causes disease requiring hospitalisation of previously fit individuals as well as those with underlying conditions. An abnormal chest x-ray or a raised CRP level, especially in patients who are recorded as obese or who have pulmonary conditions other than asthma or COPD, indicate a potentially serious outcome. These findings support the use of pandemic vaccine in pregnant women, children <5 years of age and those with chronic lung disease.

Download full-text


Available from: Malcolm G Semple,
  • Source
    • "Also, in Wisconsin, U.S., it was reported that the groups classified as Black, Hispanic, and Asian had several-fold higher hospitalization than the non-Hispanic White group due to pH1N1 [11]. Similar findings have also been reported in the United Kingdom [23]. Social factors may explain the ethnic disparities seen in this and other studies, which may operate through a variety of mechanisms. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Novel risk factors were associated with the 2009 pandemic A/H1N1 virus (pH1N1). Ethnicity was among these risk factors. Ethnic disparities in hospitalization and death due to pH1N1 were noted. The purpose of this study is to determine whether there are ethnic disparities in acquiring the 2009 pandemic H1N1. We conducted a test-negative case-control study of the risk of pH1N1 infection using data from Ontario, Canada. Cases were laboratory confirmed to have influenza using reverse-transcriptase polymerase chain reaction (RT-PCR), and controls were obtained from the same population and were RT-PCR negative. Multivariate logistic regression was used to determine the association between ethnicity and pH1N1 infection, while adjusting for demographic, clinical and ecological covariates. Adult cases were more likely than controls to be self-classified as East/Southeast Asian (OR = 2.59, 95% CI 1.02-6.57), South Asian (OR = 6.22, 95% CI 2.01-19.24) and Black (OR = 9.72, 95% CI 2.29-41.27). Pediatric cases were more likely to be self-identified as Black (OR = 6.43, 95% CI 1.83-22.59). However, pediatric cases without risk factors for severe influenza infection were more likely to be South Asian (OR 2.92, 95% CI 1.11-7.68), Black (OR 16.02, 95% CI 2.85-89.92), and West Asian/Arab, Latin American or Multi-racial groups (OR 3.09 95% CI 1.06-9.00). pH1N1 cases were more likely to come from certain ethnic groups compared to test-negative controls. Insights into whether these disparities arise due to social or biological factors are needed in order to understand what approaches can be taken to reduce the burden of a future influenza pandemic.
    BMC Public Health 03/2014; 14(1):214. DOI:10.1186/1471-2458-14-214 · 2.26 Impact Factor
  • Source
    • "5, 6 Surprisingly, despite the high rate of hospitalization, asthma was associated with lower rates of pneumonia, intensive care unit admission, mechanical ventilation and death.3, 4, 5, 7, 8, 9 Reasons for these seemingly contradictory outcomes in asthmatics that develop symptomatic influenza are unclear, but they are of obvious scientific and public health interest. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Asthma was the most common comorbidity in hospitalized patients during the 2009 influenza pandemic. For unknown reasons, hospitalized asthmatics had less severe outcomes and were less likely to die from pandemic influenza. Our data with primary human bronchial cells indicate that changes intrinsic to epithelial cells in asthma may protect against cytopathology induced by influenza virus. To further study influenza virus pathogenesis in allergic hosts, we aimed to develop and characterize murine models of asthma and influenza comorbidity to determine structural, physiological and immunological changes induced by influenza in the context of asthma. Aspergillus fumigatus-sensitized and -challenged C57BL/6 mice were infected with pandemic H1N1 influenza virus, either during peak allergic inflammation or during airway remodeling to gain insight into disease pathogenesis. Mice infected with the influenza virus during peak allergic inflammation did not lose body weight and cleared the virus rapidly. These mice exhibited high eosinophilia, preserved airway epithelial cell integrity, increased mucus, reduced interferon response and increased insulin-like growth factor-1. In contrast, weight loss and viral replication kinetics in the mice that were infected during the late airway remodeling phase were equivalent to flu-only controls. These mice had neutrophils in the airways, damaged airway epithelial cells, less mucus production, increased interferons and decreased insulin-like growth factor-1. The state of the allergic airways at the time of influenza virus infection alters host responses against the virus. These murine models of asthma and influenza comorbidity may improve our understanding of the epidemiology and pathogenesis of viral infections in humans with asthma.Immunology and Cell Biology advance online publication, 28 January 2014; doi:10.1038/icb.2013.113.
    Immunology and Cell Biology 01/2014; 92(5). DOI:10.1038/icb.2013.113 · 4.15 Impact Factor
  • Source
    • "Studies that examined obesity along with other comorbidities as a risk factor for poor outcomes in H1N1 have shown obesity to be the strongest and most consistent predictor. For example more than half of hospitalized H1N1 cases in California observed between April and August 2009 were obese and one-quarter morbidly obese [45], and obesity was identified as the strongest predictor of death in an analysis of hospitalized H1N1 cases in the United Kingdom (odds-ratio = 6.08; p = 0.01) [46]. We further note, that Morgan and colleagues [42] estimated the odds-ratios of death for obese and morbidly obese persons versus normal weight persons among patients with chronic medical conditions that are risk factors for poor influenza outcomes (as identified by the Advisory Committee on Immunization Practices [ACIP]) and among patients with no chronic medical conditions. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background High rates of bacterial coinfection in autopsy data from the 2009 H1N1 influenza (“flu”) pandemic suggest synergies between flu and pneumococcal disease (PD) during pandemic conditions, and highlight the importance of interventions like the 13-valent pneumococcal conjugate vaccine (PCV13) that may mitigate the impact of a pandemic. Methods We used a decision-analytic model, estimated from published sources, to assess the impact of pediatric vaccination with PCV13 versus the 7-valent vaccine (PCV7) on PD incidence and mortality in a normal flu season (10% flu incidence) and in a pandemic similar to 2009-2010 H1N1 (20% flu incidence, mild virulence, high impact in children). Both direct and indirect (herd) effects against PD were considered. Effectiveness of PCV13 was extrapolated from observed PCV7 data, using assumptions of serotype prevalence and PCV13 protection against the 6 serotypes not in PCV7. To simulate 2009–2010 H1N1, autopsy data were used to estimate the overall proportion of flu deaths with bacterial coinfections. By assuming that increased risk of death during the pandemic occurred among those with comorbidity (using obesity as proxy) and bacterial coinfections primarily due to S. pneumoniae or S. aureus, we estimated the proportion co-infected among all (fatal and non-fatal) flu cases (7.6% co-infected with any organism; 2.2% with S. pneumoniae). PD incidence, mortality, and total healthcare costs were evaluated over a 1-year horizon. Results In a normal flu season, compared to PCV7, PCV13 is expected to prevent an additional 13,400 invasive PD (IPD) cases, 399,000 pneumonia cases, and 2,900 deaths, leading to cost savings of $472 M. In a pandemic similar to 2009–2010 H1N1, PCV13 would prevent 22,800 IPD cases, 872,000 pneumonia cases, and 3,700 deaths, resulting in cost savings of $1.0 B compared to PCV7. Conclusions In a flu pandemic similar to the 2009–2010 H1N1, protection against the 6 additional serotypes in PCV13 would likely be effective in preventing pandemic-related PD cases, mortality, and associated costs.
    BMC Infectious Diseases 05/2013; 13(1):229. DOI:10.1186/1471-2334-13-229 · 2.61 Impact Factor
Show more