Rapamycin-Conditioned Donor Dendritic Cells Differentiate CD4+CD25+Foxp3+T Cells In Vitro with TGF-beta 1 for Islet Transplantation

Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
American Journal of Transplantation (Impact Factor: 5.68). 08/2010; 10(8):1774-84. DOI: 10.1111/j.1600-6143.2010.03199.x
Source: PubMed


Dendritic cells (DCs) conditioned with the mammalian target of rapamycin (mTOR) inhibitor rapamycin have been previously shown to expand naturally existing regulatory T cells (nTregs). This work addresses whether rapamycin-conditioned donor DCs could effectively induce CD4(+)CD25(+)Foxp3(+) Tregs (iTregs) in cell cultures with alloantigen specificities, and whether such in vitro-differentiated CD4(+)CD25(+)Foxp3(+) iTregs could effectively control acute rejection in allogeneic islet transplantation. We found that donor BALB/c bone marrow-derived DCs (BMDCs) pharmacologically modified by the mTOR inhibitor rapamycin had significantly enhanced ability to induce CD4(+)CD25(+)Foxp3(+) iTregs of recipient origin (C57BL/6 (B6)) in vitro under Treg driving conditions compared to unmodified BMDCs. These in vitro-induced CD4(+)CD25(+)Foxp3(+) iTregs exerted donor-specific suppression in vitro, and prolonged allogeneic islet graft survival in vivo in RAG(-/-) hosts upon coadoptive transfer with T-effector cells. The CD4(+)CD25(+)Foxp3(+) iTregs expanded and preferentially maintained Foxp3 expression in the graft draining lymph nodes. Finally, the CD4(+)CD25(+)Foxp3(+) iTregs were further able to induce endogenous naïve T cells to convert to CD4(+)CD25(+)Foxp3(+) T cells. We conclude that rapamycin-conditioned donor BMDCs can be exploited for efficient in vitro differentiation of donor antigen-specific CD4(+)CD25(+)Foxp3(+) iTregs. Such in vitro-generated donor-specific CD4(+)CD25(+)Foxp3(+) iTregs are able to effectively control allogeneic islet graft rejection.

Download full-text


Available from: Qin Yang, Mar 12, 2014
  • Source
    • "RAPA has been reported to have unique tolerance-promoting and Treg facilitating/sparing properties in small animal models of organ transplantation [23,24]. We [10,25] and others [7,21,26,27] have shown that when donor-derived, RAPA-conditioned DC (RAPA-DC) or recipient-derived RAPA-DC pulsed with donor allo-Ag are administered to recipients prior to transplantation, donor graft survival is prolonged indefinitely, especially when combined with a short course of low dose IS, such as RAPA, cyclosporine, or FK506 (Table  2). Taner et al. have shown, in the mouse model, prolongation of heart allograft survival when recipient-derived RAPA-DC pulsed with allo-Ag were given i.v. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In efforts to minimize the chronic administration of immunosuppression (IS) drugs in transplantation and autoimmune disease, various cell-based tolerogenic therapies, including the use of regulatory or tolerogenic dendritic cells (tolDC) have been developed. These DC-based therapies aim to harness the inherent immunoregulatory potential of these professional antigen-presenting cells. In this short review, we describe both the demonstrated tolerogenic properties, and current limitations of rapamycin-conditioned DC (RAPA-DC). RAPA-DC are generated through inhibition of the integrative kinase mammalian target of rapamycin (mTOR) by the immunosuppressive macrolide rapamycin during propagation of monocyte-derived DC. Consistent with the characteristics of tolDC, murine RAPA-DC display resistance to phenotypic maturation induced by pro-inflammatory stimuli; exhibit the ability to migrate to secondary lymphoid tissue (important for 'cross-presentation' of antigen to T cells), and enrich for naturally-occurring CD4+ regulatory T cells. In rodent models, delivery of recipient-derived RAPA-DC pulsed with donor antigen prior to organ transplantation can prolong allogeneic heart-graft survival indefinitely, especially when combined with a short course of IS. These encouraging data support ongoing efforts to develop RAPA-DC for clinical testing. When compared to murine RAPA-DC however, human RAPA-DC have proven only partially resistant to maturation triggered by pro-inflammatory cytokines, and display heterogeneity in their impact on effector T-cell expansion and function. In total, the evidence suggests the need for more in-depth studies to better understand the mechanisms by which mTOR controls human DC function. These studies may facilitate the development of RAPA-DC therapy alone or together with agents that preserve/enhance their tolerogenic properties as clinical immunoregulatory vectors.
    09/2012; 1(1):16. DOI:10.1186/2047-1440-1-16
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clinical islet transplantation is a β-cell replacement strategy that represents a possible definitive intervention for patients with type 1 diabetes, offering substantial benefits in terms of lowering daily insulin requirements and reducing incidences of debilitating hypoglycemic episodes and unawareness. Despite impressive advances in this field, a limiting supply of islets, inadequate means for preventing islet rejection, and the deleterious diabetogenic and nephrotoxic side effects associated with chronic immunosuppressive therapy preclude its wide-spread applicability. Islet transplantation however allows a window of opportunity for attempting various therapeutic manipulations of islets prior to transplantation aimed at achieving superior transplant outcomes. In this paper, we will focus on the current status of various immunosuppressive and cellular therapies that promote graft function and survival in preclinical and clinical islet transplantation with special emphasis on the tolerance-inducing capacity of regulatory T cells as well as the β-cells regenerative capacity of stem cells.
    Journal of Transplantation 10/2011; 2011(2):637692. DOI:10.1155/2011/637692
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that neutrophilic elastase converts human immature dendritic cells (DCs) into TGF-β secreting cells and reduces its allostimulatory ability. Since TGF-β has been involved in regulatory T cells (Tregs) induction we analyzed whether elastase or neutrophil-derived culture supernatant treated DCs induce CD4(+)FOXP3(+) Tregs in a mixed lymphocyte reaction (MLR). We found that elastase or neutrophil-derived culture supernatant treated DCs increased TGF-β and decreased IL-6 production. Together with this pattern of cytokines, we observed a higher number of CD4(+)FOXP3(+) cells in the MLR cultures induced by elastase or neutrophil-derived culture supernatant treated DCs but not with untreated DCs. The higher number of CD4(+)FOXP3(+) T cell population was not observed when the enzymatic activity of elastase was inhibited with an elastase specific inhibitor and also when a TGF-β1 blocking antibody was added during the MLR culture. The increased number of CD4(+) that express FOXP3 was also seen when CD4(+)CD25(-) purified T cells were cocultured with the TGF-β producing DCs. Furthermore, these FOXP3(+) T cells showed suppressive activity in vitro. These results identify a novel mechanism by which the tolerogenic DCs generated by elastase exposure contribute to the immune regulation and may be relevant in the pathogenesis of several lung diseases where the inflammatory infiltrate contains high numbers of neutrophils and high elastase concentrations.
    Cellular Immunology 01/2011; 269(2):128-34. DOI:10.1016/j.cellimm.2011.03.013 · 1.92 Impact Factor
Show more