Rapamycin-Conditioned Donor Dendritic Cells Differentiate CD4+CD25+Foxp3+T Cells In Vitro with TGF-beta 1 for Islet Transplantation

Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
American Journal of Transplantation (Impact Factor: 6.19). 08/2010; 10(8):1774-84. DOI: 10.1111/j.1600-6143.2010.03199.x
Source: PubMed

ABSTRACT Dendritic cells (DCs) conditioned with the mammalian target of rapamycin (mTOR) inhibitor rapamycin have been previously shown to expand naturally existing regulatory T cells (nTregs). This work addresses whether rapamycin-conditioned donor DCs could effectively induce CD4(+)CD25(+)Foxp3(+) Tregs (iTregs) in cell cultures with alloantigen specificities, and whether such in vitro-differentiated CD4(+)CD25(+)Foxp3(+) iTregs could effectively control acute rejection in allogeneic islet transplantation. We found that donor BALB/c bone marrow-derived DCs (BMDCs) pharmacologically modified by the mTOR inhibitor rapamycin had significantly enhanced ability to induce CD4(+)CD25(+)Foxp3(+) iTregs of recipient origin (C57BL/6 (B6)) in vitro under Treg driving conditions compared to unmodified BMDCs. These in vitro-induced CD4(+)CD25(+)Foxp3(+) iTregs exerted donor-specific suppression in vitro, and prolonged allogeneic islet graft survival in vivo in RAG(-/-) hosts upon coadoptive transfer with T-effector cells. The CD4(+)CD25(+)Foxp3(+) iTregs expanded and preferentially maintained Foxp3 expression in the graft draining lymph nodes. Finally, the CD4(+)CD25(+)Foxp3(+) iTregs were further able to induce endogenous naïve T cells to convert to CD4(+)CD25(+)Foxp3(+) T cells. We conclude that rapamycin-conditioned donor BMDCs can be exploited for efficient in vitro differentiation of donor antigen-specific CD4(+)CD25(+)Foxp3(+) iTregs. Such in vitro-generated donor-specific CD4(+)CD25(+)Foxp3(+) iTregs are able to effectively control allogeneic islet graft rejection.

Download full-text


Available from: Qin Yang, Mar 12, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that neutrophilic elastase converts human immature dendritic cells (DCs) into TGF-β secreting cells and reduces its allostimulatory ability. Since TGF-β has been involved in regulatory T cells (Tregs) induction we analyzed whether elastase or neutrophil-derived culture supernatant treated DCs induce CD4(+)FOXP3(+) Tregs in a mixed lymphocyte reaction (MLR). We found that elastase or neutrophil-derived culture supernatant treated DCs increased TGF-β and decreased IL-6 production. Together with this pattern of cytokines, we observed a higher number of CD4(+)FOXP3(+) cells in the MLR cultures induced by elastase or neutrophil-derived culture supernatant treated DCs but not with untreated DCs. The higher number of CD4(+)FOXP3(+) T cell population was not observed when the enzymatic activity of elastase was inhibited with an elastase specific inhibitor and also when a TGF-β1 blocking antibody was added during the MLR culture. The increased number of CD4(+) that express FOXP3 was also seen when CD4(+)CD25(-) purified T cells were cocultured with the TGF-β producing DCs. Furthermore, these FOXP3(+) T cells showed suppressive activity in vitro. These results identify a novel mechanism by which the tolerogenic DCs generated by elastase exposure contribute to the immune regulation and may be relevant in the pathogenesis of several lung diseases where the inflammatory infiltrate contains high numbers of neutrophils and high elastase concentrations.
    Cellular Immunology 01/2011; 269(2):128-34. DOI:10.1016/j.cellimm.2011.03.013 · 1.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clinical islet transplantation is a β-cell replacement strategy that represents a possible definitive intervention for patients with type 1 diabetes, offering substantial benefits in terms of lowering daily insulin requirements and reducing incidences of debilitating hypoglycemic episodes and unawareness. Despite impressive advances in this field, a limiting supply of islets, inadequate means for preventing islet rejection, and the deleterious diabetogenic and nephrotoxic side effects associated with chronic immunosuppressive therapy preclude its wide-spread applicability. Islet transplantation however allows a window of opportunity for attempting various therapeutic manipulations of islets prior to transplantation aimed at achieving superior transplant outcomes. In this paper, we will focus on the current status of various immunosuppressive and cellular therapies that promote graft function and survival in preclinical and clinical islet transplantation with special emphasis on the tolerance-inducing capacity of regulatory T cells as well as the β-cells regenerative capacity of stem cells.
    Journal of Transplantation 10/2011; 2011:637692. DOI:10.1155/2011/637692
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DCs) play a pivotal role in regulating the balance between immunity and tolerance of the immune system. Recent advancements in DC biology and techniques for manipulating the function of these cells have shown their immense therapeutic potential for treating a variety of immune disorders. Theoretically, antigen-specific tolerogenic DCs can be generated in vitro and delivered to patients to correct the dysfunctional immune responses that attack their own tissues or over-react to innocuous foreign antigens. However, DCs are a heterogeneous population of cells with differences in cell surface makers, differentiation pathways and functions. Studies are needed to examine which subset of DCs can be used for what type of applications. Furthermore, most of the information on tolerogenic DCs has been obtained from animal models and translational studies are needed to examine how a DC therapeutic strategy can be implemented clinically to modulate immunity.
    Immunology 03/2011; 132(3):307-14. DOI:10.1111/j.1365-2567.2010.03396.x · 3.74 Impact Factor
Show more