Article

High level expression and purification of antimicrobial human cathelicidin LL-37 in Escherichia coli.

CPN spol. s r.o., Dolní Dobrouc 401, Czech Republic.
Applied Microbiology and Biotechnology (Impact Factor: 3.81). 09/2010; 88(1):167-75. DOI: 10.1007/s00253-010-2736-7
Source: PubMed

ABSTRACT The human antimicrobial peptide LL-37 is a cationic peptide with antimicrobial activity against both Gram-positive and Gram-negative microorganisms. This work describes the development of an expression system based on Escherichia coli capable of high production of the recombinant LL-37. The fusion protein Trx-LL-37 was expressed under control of T7 promoter. The expression of T7 polymerase in the E. coli strain constructed in this work was controlled by regulation mechanisms of the arabinose promoter. The expression plasmid was stabilized by the presence of parB locus which ensured higher homology of the culture during cultivation without antibiotic selection pressure. This system was capable of producing up to 1 g of fusion protein per 1 l of culture. The subsequent semipreparative HPLC allowed us to isolate 40 mg of pure LL-37. LL-37 showed high antimicrobial activity against both Gram-negative and Gram-positive microorganisms. Its activity against Candida albicans was practically nonexistent. Minimal Inhibition Concentration (MIC) determined for E. coli was 1.65 microM; for Staphylococcus aureus 2.31 microM, and for Enterococcus faecalis 5.54 microM. The effects of cathelicidin on E. coli included the ability to permeabilize both cell membranes, as could be observed by the increase of beta-galactosidase activity in extracellular space in time. Physiological changes were studied by scanning electron microscopy; Gram-positive microorganisms did not show any visible changes in cell shapes while the changes observed on E. coli cells were evident. The results of this work show that the herein designed expression system is capable of producing adequate quantities of active human antimicrobial peptide LL-37.

0 Bookmarks
 · 
73 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, a growing number of macromolecules such as peptides and proteins have been formulated into various microbicide formulations for the prevention of sexually transmitted infections. However, a fast and reliable high-throughput method for quantitating peptide/protein in polymer-based microbicide formulations is still lacking. As a result, we developed and validated a reversed-phase high-performance liquid chromatography method for the quantitation of gp120 fragment and LL-37 simultaneously in various microbicide gel formulations. This method was capable of detecting a limit of linearity (regression coefficient of 0.999) for gp120 fragment and LL-37 within a range of 0.625–80 and 1.25–80 µg mL−1, respectively. The lower limit of quantification for gp120 fragment and LL-37 was 1.14 and 0.31 µg mL−1, respectively. Method validation demonstrated acceptable intra- and inter-day RSD % (<5 %) and accuracy (95.67–100.5 %). Formulating both peptides into polymeric pharmaceutical gel formulations showed high extraction efficiency (in the range of 95.90 ± 3.03 to 111.45 ± 2.51 %). Using this method, we were able to separate and identify the forced degraded products from both peptides simultaneously without affecting the quantitation of both peptides in the polymeric dosage forms. Furthermore, this method was able to detect and separate degradants that were unable to be revealed using gel eletrophoresis.
    Chromatographia 10/2014; · 1.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rho GDP dissociation inhibitor 2 (RhoGDI2) was identified as a functional metastasis suppressor in human bladder cancer, suggesting that increasing the RhoGDI2 level may represent a promising therapeutic strategy. It has been shown that the transactivator of transcription (TAT) protein from HIV-1 is able to efficiently deliver various biological molecules into several cell types. In this study, TAT peptide was fused with the N-terminus of RhoGDI2, and the resulting TAT-RhoGDI2 fragment was inserted into the pGEX-6p-1 plasmid and expressed as a glutathione S-transferase (GST)/TAT-RhoGDI2 fusion protein in Escherichia coli BL21(DE3) cells. A two-step purification strategy involving glutathione sepharose chromatography and PreScission protease cleavage was developed to purify TAT-RhoGDI2; subsequently, the identification of the involved macromolecules was achieved by Western blot. The final product, TAT-RhoGDI2, was obtained at a concentration of 112 mg/L. This is the first report on the efficient production of bioactive TAT-RhoGDI2 through a gene-engineering approach in E. coli. Using flow cytometry, we found that the TAT-RhoGDI2 fusion proteins could penetrate into bladder cancer cells with an extremely high efficiency. In vitro scratch and transwell assay and the migration/invasion behavior of UMUC3 cells were strongly reduced by the treatment with TAT-RhoGDI2. These studies support the use of the TAT-RhoGDI2 protein in tumor metastasis therapy.
    Applied microbiology and biotechnology. 08/2014;
  • Source
    Science against microbial pathogens: communicating current research and technological advances, 3 edited by A. Mendez-Vilas, 12/2011: pages 992-1002; Formatex Research Center., ISBN: (13): 978-84-939843-2-8