Article

Blocking early GABA depolarization with bumetanide results in permanent alterations in cortical circuits and sensorimotor gating deficits.

Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco CA 94143, USA.
Cerebral Cortex (Impact Factor: 8.31). 03/2011; 21(3):574-87. DOI: 10.1093/cercor/bhq124
Source: PubMed

ABSTRACT A high incidence of seizures occurs during the neonatal period when immature networks are hyperexcitable and susceptible to hypersyncrhonous activity. During development, γ-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in adults, typically excites neurons due to high expression of the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1). NKCC1 facilitates seizures because it renders GABA activity excitatory through intracellular Cl(-) accumulation, while blocking NKCC1 with bumetanide suppresses seizures. Bumetanide is currently being tested in clinical trials for treatment of neonatal seizures. By blocking NKCC1 with bumetanide during cortical development, we found a critical period for the development of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate synapses. Disruption of GABA signaling during this window resulted in permanent decreases in excitatory synaptic transmission and sensorimotor gating deficits, a common feature in schizophrenia. Our study identifies an essential role for GABA-mediated depolarization in regulating the balance between cortical excitation and inhibition during a critical period and suggests a cautionary approach for using bumetanide in treating neonatal seizures.

0 Followers
 · 
126 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Spontaneous neurotransmitter release is a core element of synaptic communication in mature neurons, but despite exceptionally high levels of spontaneous vesicle cycling occurring in developing axons, little is known of its function during this period. We now show that high-level, spontaneous axonal release of the neurotransmitter glutamate can signal at long range to NMDA receptors on developing dendrites, prior to synapse formation and, indeed, axodendritic contact. Blockade of NMDA signaling during this early period of spontaneous vesicle cycling leads to a reduction in dendritic arbor complexity, indicating an important role for early spontaneous release in dendritic arbor growth. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hyperpolarizing and inhibitory GABA regulates critical periods for plasticity in sensory cortices. Here we examine the role of early, depolarizing GABA in the control of plasticity mechanisms. We report that brief interference with depolarizing GABA during early development prolonged critical-period plasticity in visual cortical circuits without affecting the overall development of the visual system. The effects on plasticity were accompanied by dampened inhibitory neurotransmission, downregulation of brain-derived neurotrophic factor (BDNF) expression and reduced density of extracellular matrix perineuronal nets. Early interference with depolarizing GABA decreased perinatal BDNF signaling, and a pharmacological increase of BDNF signaling during GABA interference rescued the effects on plasticity and its regulators later in life. We conclude that depolarizing GABA exerts a long-lasting, selective modulation of plasticity of cortical circuits by a strong crosstalk with BDNF.
    Nature Neuroscience 12/2014; DOI:10.1038/nn.3890 · 14.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Down syndrome (DS) is the most frequent genetic cause of intellectual disability, and altered GABAergic transmission through Cl(-)-permeable GABAA receptors (GABAARs) contributes considerably to learning and memory deficits in DS mouse models. However, the efficacy of GABAergic transmission has never been directly assessed in DS. Here GABAAR signaling was found to be excitatory rather than inhibitory, and the reversal potential for GABAAR-driven Cl(-) currents (ECl) was shifted toward more positive potentials in the hippocampi of adult DS mice. Accordingly, hippocampal expression of the cation Cl(-) cotransporter NKCC1 was increased in both trisomic mice and individuals with DS. Notably, NKCC1 inhibition by the FDA-approved drug bumetanide restored ECl, synaptic plasticity and hippocampus-dependent memory in adult DS mice. Our findings demonstrate that GABA is excitatory in adult DS mice and identify a new therapeutic approach for the potential rescue of cognitive disabilities in individuals with DS.
    Nature Medicine 02/2015; 21(4). DOI:10.1038/nm.3827 · 22.86 Impact Factor