Article

DNA vaccines for targeting bacterial infections.

Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
Expert Review of Vaccines (Impact Factor: 4.22). 07/2010; 9(7):747-63. DOI: 10.1586/erv.10.57
Source: PubMed

ABSTRACT DNA vaccination has been of great interest since its discovery in the 1990s due to its ability to elicit both humoral and cellular immune responses. DNA vaccines consist of a DNA plasmid containing a transgene that encodes the sequence of a target protein from a pathogen under the control of a eukaryotic promoter. This revolutionary technology has proven to be effective in animal models and four DNA vaccine products have recently been approved for veterinary use. Although few DNA vaccines against bacterial infections have been tested, the results are encouraging. Because of their versatility, safety and simplicity a wider range of organisms can be targeted by these vaccines, which shows their potential advantages to public health. This article describes the mechanism of action of DNA vaccines and their potential use for targeting bacterial infections. In addition, it provides an updated summary of the methods used to enhance immunogenicity from codon optimization and adjuvants to delivery techniques including electroporation and use of nanoparticles.

Download full-text

Full-text

Available from: Kar Muthumani, Jun 27, 2015
0 Followers
 · 
149 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infectious Bronchitis (IB) of chicken is a viral disease caused by a Coronavirus (IBV). It is worldwide distributed and characterized by its heavy economic impact on the poultry industry. The objective of this study is to elucidate the molecular aspect of the IBV, to describe the humoral and cellular immune responses, especially those played by cytotoxic T lymphocytes in the control of this infection in addition to the role played by each of the viral proteins S and N in the induction of those immune reactions. Biotechnological advances (especially gene therapy) in the IB control have been assessed by several researchers; however they are still facing some constraints. Development of new vaccines against IBV involves detailed knowledge of its antigenic structure and of the specific Cytotoxic T Lymphocytes (CTL) epitopes.
    Asian Journal of Poultry Science 03/2015; 9(2). DOI:10.3923/ajpsaj.2015.57.69
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have recently identified the two major determinants of the glycoprotein G of the viral hemorrhagic septicaemia rhabdovirus (gpGVHSV), peptides p31 and p33 implicated in triggering the host type I IFN antiviral response associated to these rhabdoviral antigens. With the aim to investigate the properties of these viral glycoprotein regions as DNA molecular adjuvants, their corresponding cDNA sequences were cloned into a plasmid (pMCV1.4) flanked by the signal peptide and transmembrane sequences of gpGVHSV. In addition, a plasmid construct encoding both sequences p31 and p33 (pMCV1.4-p31+p33) was also designed. In vitro transitory cell transfection assays showed that these VHSV gpG regions were able to induce the expression of type I IFN stimulated genes as well as to confer resistance to the infection with a different fish rhabdovirus, the spring viremia of carp virus (SVCV). In vivo, zebrafish intramuscular injection of only 1μg of the construct pMCV1.4-p31+p33 conferred fish protection against SVCV lethal challenge up to 45 days post-immunization. Moreover, pMCV1.4-p31+p33 construct was assayed for molecular adjuvantcity's for a DNA vaccine against SVCV based in the surface antigen of this virus (pAE6-GSVCV). The results showed that the co-injection of the SVCV DNA vaccine and the molecular adjuvant allowed (i) a ten-fold reduction in the dose of pAE6-Gsvcv without compromising its efficacy (ii) an increase in the duration of protection, and (iii) an increase in the survival rate. To our knowledge, this is the first report in which specific IFN-inducing regions from a viral gpG are used to design more-efficient and cost-effective viral vaccines, as well as to improve our knowledge on how to stimulate the innate immune system.
    Vaccine 09/2014; 32(45). DOI:10.1016/j.vaccine.2014.07.111 · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tuberculosis remains one of the major causes of global public health problems. There is no effective vaccine for the disease until now. Many reports show that DNA vaccines are promising to induce protection against Mycobacterium tuberculosis (M. tb); however, the efficiency of DNA vaccine is limited due to inadequate delivery systems. Among others, live attenuated bacterial vectors such as Salmonella enterica typhimurium (S. typhimurium) have significant promise as efficient mucosal delivery vehicles for DNA vaccines. In this study, we constructed recombinant attenuated S. typhimurium DNA vaccines carrying genes encoding resuscitation promoting factor (Rpf)-like proteins of M. tb on eukaryotic expression plasmid agianst latent tuberculosis and evaluated the plasmid stability and growth curve assays of the recombinant Salmonella vaccine constructs in vitro. Four Rpf gene fragments (RpfB, RpfC, RpfD, RpfE) associated with latency were amplified from genomic DNA of the H37Rv strain of M. tb, cloned into eukaryotic expression plasmid (pVR1020) and verified by sequencing. In later studies, we will demonstrate the potential use of the Salmonella-mediated DNA constructs as candidate post-exposure vaccines against tuberculosis through testing their immunogenicity and effectiveness for oral delivery in eukaryotic systems.
    AFRICAN JOURNAL OF BIOTECHNOLOGY 07/2012; 11(50):11150-11159. · 0.57 Impact Factor