Article

DNA vaccines for the treatment of prostate cancer.

Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI, USA.
Expert Review of Vaccines (Impact Factor: 4.22). 07/2010; 9(7):731-45. DOI: 10.1586/erv.10.64
Source: PubMed

ABSTRACT Prostate cancer is a significant public health problem, and the most commonly diagnosed cancer in the USA. The long natural history of prostate cancer, the presence of a serum biomarker that can be used to detect very early recurrences, and the previous identification of multiple potential tissue-specific target antigens are all features that make this disease suitable for the development of anti-tumor vaccines. To date, many anti-tumor vaccines have entered clinical testing for patients with prostate cancer, and some have demonstrated clinical benefit. DNA vaccines represent one vaccine approach that has been evaluated in multiple preclinical models and clinical trials. The safety, specificity for the target antigen, ease of manufacturing and ease of incorporating other immune-modulating approaches make DNA vaccines particularly relevant for future development. This article focuses on DNA vaccines specifically in the context of prostate cancer treatment, focusing on antigens targeted in preclinical models, recent clinical trials and efforts to improve the potency of these vaccines.

0 Followers
 · 
108 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer (PCa) is the most diagnosed cancer in the western male population with high mortality. Recently, alternative approaches based on immunotherapy including mRNA vaccines for PCa have shown therapeutic promise. However, for mRNA vaccine, several disadvantages such as the instability of mRNA, the high cost of gold particles, the limited production scale for mRNA-transfected dendritic cells in vitro, limit their development. Herein, recombinant bacteriophage MS2 virus-like particles (VLPs), which based on the interaction of a 19-nucleotide RNA aptamer and the coat protein of bacteriophage MS2, successfully addressed these questions, in which target mRNA was packaged by MS2 capsid. MS2 VLP-based mRNA vaccines were easily prepared by recombinant protein technology, nontoxic and RNase-resistant. We show the packaged mRNA was translated into protein as early as 12 hr after phagocytosed by macrophages. Moreover, MS2 VLP-based mRNA vaccines induced strong humoral and cellular immune responses, especially antigen-specific cytotoxic T-lymphocyte (CTL) and balanced Th1/Th2 responses without upregulation of CD4(+) regulatory T cells, and protected C57BL/6 mice against PCa completely. As a therapeutic vaccine, MS2 VLP-based mRNA vaccines delayed tumor growth. Our results provide proof of concept on the efficacy and safety of MS2 VLP-based mRNA vaccine, which provides a new delivery approach for mRNA vaccine and implies important clinical value for the prevention and therapy of PCa.
    International Journal of Cancer 04/2014; 134(7). DOI:10.1002/ijc.28482 · 5.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since the approval of sipuleucel-T for men with metastatic castrate resistant prostate cancer in 2010, great strides in the development of anti-cancer immunotherapies have been made. Current drug development in this area has focused primarily on antigen-specific (i.e. cancer vaccines and antibody based therapies) or checkpoint inhibitor therapies, with the checkpoint inhibitors perhaps gaining the most attention as of late. Indeed, drugs blocking the inhibitory signal generated by the engagement of cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed cell death-1 (PD-1) found on T-cells has emerged as potent means to combat the immunosuppressive milieu. The anti-CTLA-4 monoclonal antibody ipilimumab has already been approved in advanced melanoma and two phase III trials evaluating ipilimumab in men with metastatic castrate-resistant prostate cancer are underway. A phase III trial evaluating ProstVac-VF, a poxvirus-based therapeutic prostate cancer vaccine, is also underway. While there has been reason for encouragement over the past few years, many questions regarding the use of immunotherapies remain. Namely, it is unclear what stage of disease is most likely to benefit from these approaches, how best to incorporate said treatments with each other and into our current treatment regimens and which therapy is most appropriate for which disease. Herein we review some of the recent advances in immunotherapy as related to the treatment of prostate cancer and outline some of the challenges that lie ahead.
    CANCER AND METASTASIS REVIEW 01/2014; 33(2-3). DOI:10.1007/s10555-013-9479-8 · 6.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of safe and effective vaccines for the prevention of elusive infectious diseases remains a public health priority. Immunization, characterized by adaptive immune responses to specific antigens, can be raised by an array of delivery vectors. However, current commercial vaccination strategies are predicated on the retooling of archaic technology. This review will discuss current and emerging strategies designed to elicit immune responses in the context of genetic vaccination. Selected strategies at the biomaterial-biological interface will be emphasized to illustrate the potential of coupling both fields towards a common goal.
    09/2014; 2(46). DOI:10.1039/C4TB01058B