Modeling capping protein FRAP and CALI experiments reveals in vivo regulation of actin dynamics

Department of Cell and Developmental Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7090, USA.
Cytoskeleton (Impact Factor: 3.12). 08/2010; 67(8):519-34. DOI: 10.1002/cm.20463
Source: PubMed


To gain insights on cellular mechanisms regulating actin polymerization, we used the Virtual Cell to model fluorescence recovery after photobleaching (FRAP) and chromophore-assisted laser inactivation (CALI) experiments on EGFP-capping protein (EGFP-CP). Modeling the FRAP kinetics demonstrated that the in vivo rate for the dissociation of CP from actin filaments is much faster (approximately 0.1 s(-1)) than that measured in vitro (0.01-0.0004 s(-1)). The CALI simulation revealed that in order to induce sustainable changes in cell morphology after CP inactivation, the cells should exhibit anticapping ability. We included the VASP protein as the anticapping agent in the modeling scheme. The model predicts that VASP affinity for barbed ends has a cooperative dependence on the concentration of VASP-barbed end complexes. This dependence produces a positive feedback that stabilizes the complexes and allows sustained growth at clustered filament tips. We analyzed the range of laser intensities that are sufficient to induce changes in cell morphology. This analysis demonstrates that FRAP experiments with EGFP-CP can be performed safely without changes in cell morphology, because, the intensity of the photobleaching beam is not high enough to produce the critical concentration of free barbed ends that will induce filament growth before diffusional replacement of EGFP-CP occurs.

16 Reads
  • Source
    • "We have previously demonstrated that clustering of membrane-targeted Nck SH3 domains induces actin polymerization in the form of highly motile actin comet tails (Rivera et al., 2004, 2009). We have also created a computational model of the actin cytoskeleton (Ditlev et al., 2009; Kapustina et al., 2010). In this study, we introduced modifications to these tools to examine the quantitative relationships between Nck and actin dynamics. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulation of actin dynamics through the Nck/N-WASp (neural Wiskott-Aldrich syndrome protein)/Arp2/3 pathway is essential for organogenesis, cell invasiveness, and pathogen infection. Although many of the proteins involved in this pathway are known, the detailed mechanism by which it functions remains undetermined. To examine the signaling mechanism, we used a two-pronged strategy involving computational modeling and quantitative experimentation. We developed predictions for Nck-dependent actin polymerization using the Virtual Cell software system. In addition, we used antibody-induced aggregation of membrane-targeted Nck SH3 domains to test these predictions and to determine how the number of molecules in Nck aggregates and the density of aggregates affected localized actin polymerization in living cells. Our results indicate that the density of Nck molecules in aggregates is a critical determinant of actin polymerization. Furthermore, results from both computational simulations and experimentation support a model in which the Nck/N-WASp/Arp2/3 stoichiometry is 4:2:1. These results provide new insight into activities involving localized actin polymerization, including tumor cell invasion, microbial pathogenesis, and T cell activation.
    The Journal of Cell Biology 05/2012; 197(5):643-58. DOI:10.1083/jcb.201111113 · 9.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cyclic AMP signals encode information required to differentially regulate a wide variety of cellular responses; yet it is not well understood how information is encrypted within these signals. An emerging concept is that compartmentalization underlies specificity within the cAMP signaling pathway. This concept is based on a series of observations indicating that cAMP levels are distinct in different regions of the cell. One such observation is that cAMP production at the plasma membrane increases pulmonary microvascular endothelial barrier integrity, whereas cAMP production in the cytosol disrupts barrier integrity. To better understand how cAMP signals might be compartmentalized, we have developed mathematical models in which cellular geometry as well as total adenylyl cyclase and phosphodiesterase activities were constrained to approximate values measured in pulmonary microvascular endothelial cells. These simulations suggest that the subcellular localizations of adenylyl cyclase and phosphodiesterase activities are by themselves insufficient to generate physiologically relevant cAMP gradients. Thus, the assembly of adenylyl cyclase, phosphodiesterase, and protein kinase A onto protein scaffolds is by itself unlikely to ensure signal specificity. Rather, our simulations suggest that reductions in the effective cAMP diffusion coefficient may facilitate the formation of substantial cAMP gradients. We conclude that reductions in the effective rate of cAMP diffusion due to buffers, structural impediments, and local changes in viscosity greatly facilitate the ability of signaling complexes to impart specificity within the cAMP signaling pathway.
    AJP Cell Physiology 11/2011; 302(6):C839-52. DOI:10.1152/ajpcell.00361.2011 · 3.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The shape of a cell, the sizes of subcellular compartments, and the spatial distribution of molecules within the cytoplasm can all control how molecules interact to produce a cellular behavior. This chapter describes how these spatial features can be included in mechanistic mathematical models of cell signaling. The Virtual Cell computational modeling and simulation software is used to illustrate the considerations required to build a spatial model. An explanation of how to appropriately choose between physical formulations that implicitly or explicitly account for cell geometry and between deterministic versus stochastic formulations for molecular dynamics is provided, along with a discussion of their respective strengths and weaknesses. As a first step toward constructing a spatial model, the geometry needs to be specified and associated with the molecules, reactions, and membrane flux processes of the network. Initial conditions, diffusion coefficients, velocities, and boundary conditions complete the specifications required to define the mathematics of the model. The numerical methods used to solve reaction-diffusion problems both deterministically and stochastically are then described and some guidance is provided in how to set up and run simulations. A study of cAMP signaling in neurons ends the chapter, providing an example of the insights that can be gained in interpreting experimental results through the application of spatial modeling.
    Methods in cell biology 01/2012; 110:195-221. DOI:10.1016/B978-0-12-388403-9.00008-4 · 1.42 Impact Factor
Show more