Article

Telomere-independent Rap1 is an IKK adaptor and regulates NF-kappaB-dependent gene expression.

Laboratory of NFkappaB Signaling, Proteos, Singapore 138673, Singapore.
Nature Cell Biology (Impact Factor: 20.06). 08/2010; 12(8):758-67. DOI: 10.1038/ncb2080
Source: PubMed

ABSTRACT We describe a genome-wide gain-of-function screen for regulators of NF-kappaB, and identify Rap1 (Trf2IP), as an essential modulator of NF-kappaB-mediated pathways. NF-kappaB is induced by ectopic expression of Rap1, whereas its activity is inhibited by Rap1 depletion. In addition to localizing on telomeres, mammalian Rap1 forms a complex with IKKs (IkappaB kinases), and is crucial for the ability of IKKs to be recruited to, and phosphorylate, the p65 subunit of NF-kappaB to make it transcriptionally competent. Rap1-mutant mice display defective NF-kappaB activation and are resistant to endotoxic shock. Furthermore, levels of Rap1 are positively regulated by NF-kappaB, and human breast cancers with NF-kappaB hyperactivity show elevated levels of cytoplasmic Rap1. Similar to inhibiting NF-kappaB, knockdown of Rap1 sensitizes breast cancer cells to apoptosis. These results identify the first cytoplasmic role of Rap1 and provide a mechanism through which it regulates an important signalling cascade in mammals, independent of its ability to regulate telomere function.

0 Bookmarks
 · 
155 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Telomere biology is frequently associated with disease evolution in human cancer and dysfunctional telomeres have been demonstrated to contribute to genetic instability. In BCR-ABL positive chronic myeloid leukemia (CML), accelerated telomere shortening has been shown to correlate with disease evolution, risk score and response to treatment.Here, we demonstrate that proliferation of murine CML-like bone marrow cells strongly depends on telomere maintenance. CML-like cells of telomerase knockout mice with critically short telomeres (CML-iG4) are growth retarded and proliferation is terminally stalled by a robust senescent cell cycle arrest. In sharp contrast, CML-like cells with pre-shortened, but not critically short telomere lengths (CML-G2) grew most rapidly and were found to express a specific 'telomere-associated secretory phenotype' (TASP), comprising secretion of chemokines, interleukins and other growth factors, thereby potentiating oncogene-driven growth. Moreover, conditioned supernatant of CML-G2 cells markedly enhanced proliferation of CML-WT and pre-senescent CML-iG4 cells. Strikingly, a similar inflammatory mRNA expression pattern was found with disease progression from chronic phase to accelerated phase in CML patients. These findings demonstrate that telomere-induced senescence needs to be bypassed by leukemic cells in order to progress to blast crisis and provide a novel mechanism by which telomere shortening may contribute to disease progression in CML.Leukemia accepted article preview online, 7 March 2014; doi:10.1038/leu.2014.95.
    Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 03/2014; · 10.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Telomeres are specialized nucleoprotein structures that protect chromosomal ends from degradation. These structures progressively shorten during cellular division and can signal replicative senescence below a critical length. Telomere length is predominantly maintained by the enzyme telomerase. Significant decreases in telomere length and telomerase activity are associated with a host of chronic diseases; conversely their maintenance underpins the optimal function of the adaptive immune system. Habitual physical activity is associated with longer leukocyte telomere length; however, the precise mechanisms are unclear. Potential hypotheses include regulation of telomeric gene transcription and/or microRNAs (miRNAs). We investigated the acute exercise-induced response of telomeric genes and miRNAs in twenty-two healthy males (mean age = 24.1±1.55 years). Participants undertook 30 minutes of treadmill running at 80% of peak oxygen uptake. Blood samples were taken before exercise, immediately post-exercise and 60 minutes post-exercise. Total RNA from white blood cells was submitted to miRNA arrays and telomere extension mRNA array. Results were individually validated in white blood cells and sorted T cell lymphocyte subsets using quantitative real-time PCR (qPCR). Telomerase reverse transcriptase (TERT) mRNA (P = 0.001) and sirtuin-6 (SIRT6) (P<0.05) mRNA expression were upregulated in white blood cells after exercise. Fifty-six miRNAs were also differentially regulated post-exercise (FDR <0.05). In silico analysis identified four miRNAs (miR-186, miR-181, miR-15a and miR-96) that potentially targeted telomeric gene mRNA. The four miRNAs exhibited significant upregulation 60 minutes post-exercise (P<0.001). Telomeric repeat binding factor 2, interacting protein (TERF2IP) was identified as a potential binding target for miR-186 and miR-96 and demonstrated concomitant downregulation (P<0.01) at the corresponding time point. Intense cardiorespiratory exercise was sufficient to differentially regulate key telomeric genes and miRNAs in white blood cells. These results may provide a mechanistic insight into telomere homeostasis and improved immune function and physical health.
    PLoS ONE 04/2014; 9(4):e92088. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite advancement in breast cancer treatment, 30% of patients with early breast cancers experience relapse with distant metastasis. It is a challenge to identify patients at risk for relapse; therefore, the identification of markers and therapeutic targets for metastatic breast cancers is imperative. Here, we identified DP103 as a biomarker and metastasis-driving oncogene in human breast cancers and determined that DP103 elevates matrix metallopeptidase 9 (MMP9) levels, which are associated with metastasis and invasion through activation of NF-κB. In turn, NF-κB signaling positively activated DP103 expression. Furthermore, DP103 enhanced TGF-β–activated kinase-1 (TAK1) phosphorylation of NF-κB–activating IκB kinase 2 (IKK2), leading to increased NF-κB activity. Reduction of DP103 expression in invasive breast cancer cells reduced phosphorylation of IKK2, abrogated NF-κB–mediated MMP9 expression, and impeded metastasis in a murine xenograft model. In breast cancer patient tissues, elevated levels of DP103 correlated with enhanced MMP9, reduced overall survival, and reduced survival after relapse. Together, these data indicate that a positive DP103/NF-κB feedback loop promotes constitutive NF-κB activation in invasive breast cancers and activation of this pathway is linked to cancer progression and the acquisition of chemotherapy resistance. Furthermore, our results suggest that DP103 has potential as a therapeutic target for breast cancer treatment.
    The Journal of clinical investigation 09/2014; 124(9):3807-24. · 15.39 Impact Factor