Article

Cloud Computing and the DNA Data Race

Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA.
Nature Biotechnology (Impact Factor: 39.08). 07/2010; 28(7):691-3. DOI: 10.1038/nbt0710-691
Source: PubMed
2 Followers
 · 
102 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the rapidly evolving domain of next generation sequencing and bioinformatics analysis, data generation is one aspect that is increasing at a concomitant rate. The burden associated with processing large amounts of sequencing data has emphasised the need to allocate sufficient computing resources to complete analyses in the shortest possible time with manageable and predictable costs. A novel method for predicting time to completion for a popular bioinformatics software (QIIME), was developed using key variables characteristic of the input data assumed to impact processing time. Multiple Linear Regression models were developed to determine run time for two denoising algorithms and a general bioinformatics pipeline. The models were able to accurately predict clock time for denoising sequences from a naturally assembled community dataset, but not an artificial community. Speedup and efficiency tests for AmpliconNoise also highlighted that caution was needed when allocating resources for parallel processing of data. Accurate modelling of computational processing time using easily measurable predictors can assist NGS analysts in determining resource requirements for bioinformatics software and pipelines. Whilst demonstrated on a specific group of scripts, the methodology can be extended to encompass other packages running on multiple architectures, either in parallel or sequentially.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With the burgeoning development of cloud technology and services, there are an increasing number of users who prefer cloud to run their applications. All software and associated data are hosted on the cloud, allowing users to access them via a web browser from any computer, anywhere. This paper presents cisPath, an R/Bioconductor package deployed on cloud servers for client users to visualize, manage, and share functional protein interaction networks. With this R package, users can easily integrate downloaded protein-protein interaction information from different online databases with private data to construct new and personalized interaction networks. Additional functions allow users to generate specific networks based on private databases. Since the results produced with the use of this package are in the form of web pages, cloud users can easily view and edit the network graphs via the browser, using a mouse or touch screen, without the need to download them to a local computer. This package can also be installed and run on a local desktop computer. Depending on user preference, results can be publicized or shared by uploading to a web server or cloud driver, allowing other users to directly access results via a web browser. This package can be installed and run on a variety of platforms. Since all network views are shown in web pages, such package is particularly useful for cloud users. The easy installation and operation is an attractive quality for R beginners and users with no previous experience with cloud services.
    BMC Systems Biology 12/2015; 9 Suppl 1(1):S1. DOI:10.1186/1752-0509-9-S1-S1 · 2.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: DNA-based taxonomic and functional profiling is widely used for the characterization of organismal communities across a rapidly increasing array of research areas that include the role of microbiomes in health and disease, biomonitoring, and estimation of both microbial and metazoan species richness. Two principal approaches are currently used to assign taxonomy to DNA sequences: DNA metabarcoding and metagenomics. When initially developed, each of these approaches mandated their own particular methods for data analysis; however, with the development of high-throughput sequencing (HTS) techniques they have begun to share many aspects in data set generation and processing. In this review we aim to define the current characteristics, goals and boundaries of each field, and describe the different software used for their analysis. We argue that an appreciation of the potential and limitations of each method can help underscore the improvements required by each field so as to better exploit the richness of current HTS-based data sets. © The Author 2015. Published by Oxford University Press.
    Briefings in Bioinformatics 02/2015; DOI:10.1093/bib/bbv001 · 5.92 Impact Factor

Preview

Download
1 Download
Available from