Viral load drives disease in humans experimentally infected with respiratory syncytial virus.

Department of Pediatrics, University of Tennessee College of Medicine, Memphis, USA.
American Journal of Respiratory and Critical Care Medicine (Impact Factor: 11.99). 11/2010; 182(10):1305-14. DOI: 10.1164/rccm.201002-0221OC
Source: PubMed

ABSTRACT Respiratory syncytial virus (RSV) is the leading cause of childhood lower respiratory infection, yet viable therapies are lacking. Two major challenges have stalled antiviral development: ethical difficulties in performing pediatric proof-of-concept studies and the prevailing concept that the disease is immune-mediated rather than being driven by viral load.
The development of a human experimental wild-type RSV infection model to address these challenges.
Healthy volunteers (n = 35), in five cohorts, received increasing quantities (3.0-5.4 log plaque-forming units/person) of wild-type RSV-A intranasally.
Overall, 77% of volunteers consistently shed virus. Infection rate, viral loads, disease severity, and safety were similar between cohorts and were unrelated to quantity of RSV received. Symptoms began near the time of initial viral detection, peaked in severity near when viral load peaked, and subsided as viral loads (measured by real-time polymerase chain reaction) slowly declined. Viral loads correlated significantly with intranasal proinflammatory cytokine concentrations (IL-6 and IL-8). Increased viral load correlated consistently with increases in multiple different disease measurements (symptoms, physical examination, and amount of nasal mucus).
Viral load appears to drive disease manifestations in humans with RSV infection. The observed parallel viral and disease kinetics support a potential clinical benefit of RSV antivirals. This reproducible model facilitates the development of future RSV therapeutics.

Download full-text


Available from: Tom M Wilkinson, Apr 03, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Quantitative real-time polymerase chain reaction (qRT-PCR) assay of the upper respiratory tract is used increasingly to diagnose lower respiratory tract infections. The cycle threshold (CT ) values of qRT-PCR are continuous, semi-quantitative measurements of viral load, although interpretation of diagnostic qRT-PCR results are often categorized as positive, indeterminate, or negative, obscuring potentially useful clinical interpretation of CT values. From 2008 to 2010, naso/oropharyngeal swabs were collected from outpatients with influenza-like illness, inpatients with severe respiratory illness, and asymptomatic controls in rural Kenya. CT values of positive specimens (i.e., CT values < 40.0) were compared by clinical severity category for five viruses using Mann-Whitney U-test and logistic regression. Among children <5 years old we tested with respiratory syncytial virus (RSV), inpatients had lower median CT values (27.2) than controls (35.8, P = 0.008) and outpatients (34.7, P < 0.001). Among children and older patients infected with influenza virus, outpatients had the lowest median CT values (29.8 and 24.1, respectively) compared with controls (P = 0.193 for children, P < 0.001 for older participants) and inpatients (P = 0.009 for children, P < 0.001 for older participants). All differences remained significant in logistic regression when controlling for age, days since onset, and coinfection. CT values were similar for adenovirus, human metapneumovirus, and parainfluenza virus in all severity groups. In conclusion, the CT values from the qRT-PCR of upper respiratory tract specimens were associated with clinical severity for some respiratory viruses. J. Med. Virol. 85:924-932, 2013. © 2013 Wiley Periodicals, Inc.
    Journal of Medical Virology 05/2013; 85(5):924-932. DOI:10.1002/jmv.23455 · 2.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability to harness the RNA interference (RNAi) mechanism as a potential potent therapeutic has attracted great interest from academia and industry. Numerous preclinical and recent clinical trials have demonstrated the effectiveness of RNAi triggers such as synthetic small interfering RNA (siRNA). Chemical modification and delivery technologies can be utilized to avoid immune stimulation and improve the bioactivity and pharmacokinetics. Local application to the respiratory epithelia allows direct access to the site of respiratory pathogens that include influenza and respiratory syncytial virus (RSV). This review outlines the essential steps required for the clinical translation of RNAi-based respiratory therapies including disease and RNA target selection, siRNA design, respiratory barriers, and delivery solutions. Attention is given to antiviral therapies and preclinical evaluation with focus on the current status of anti-RSV clinical trials.
    02/2012; 3(1). DOI:10.1007/s13346-012-0098-7
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the most frequent extra-pulmonary manifestations of respiratory syncytial virus (RSV) infection involve the cardiovascular system, no data regarding heart function in infants with bronchiolitis associated with RSV infection have yet been systematically collected. The aim of this study was to verify the real frequency of heart involvement in patients with bronchiolitis associated with RSV infection, and whether infants with mild or moderate disease also risk heart malfunction. A total of 69 otherwise healthy infants aged 1-12 months with bronchiolitis hospitalised in standard wards were enrolled. Pernasal flocked swabs were performed to collect specimens for the detection of RSV by real-time polymerase chain reaction, and a blood sample was drawn to assess troponin I concentrations. On the day of admission, all of the infants underwent 24-hour Holter ECG monitoring and a complete heart evaluation with echocardiography. Patients were re-evaluated by investigators blinded to the etiological and cardiac findings four weeks after enrollment. Regardless of their clinical presentation, sinoatrial blocks were identified in 26/34 RSV-positive patients (76.5%) and 1/35 RSV-negative patients (2.9%) (p < 0.0001). The blocks recurred more than three times over 24 hours in 25/26 RSV-positive patients (96.2%) and none of the RSV-negative infants. Mean and maximum heart rates were significantly higher in the RSV-positive infants (p < 0.05), as was low-frequency power and the low and high-frequency power ratio (p < 0.05). The blocks were significantly more frequent in the children with an RSV load of ≥100,000 copies/mL than in those with a lower viral load (p < 0.0001). Holter ECG after 28 ± 3 days showed the complete regression of the heart abnormalities. RSV seems associated with sinoatrial blocks and transient rhythm alterations even when the related respiratory problems are mild or moderate. Further studies are needed to clarify the mechanisms of these rhythm problems and whether they remain asymptomatic and transient even in presence of severe respiratory involvement or chronic underlying disease.
    BMC Infectious Diseases 10/2010; 10:305. DOI:10.1186/1471-2334-10-305 · 2.56 Impact Factor