Article

Atonal homolog 1 is required for growth and differentiation effects of notch/gamma-secretase inhibitors on normal and cancerous intestinal epithelial cells.

Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
Gastroenterology (Impact Factor: 12.82). 09/2010; 139(3):918-28, 928.e1-6. DOI: 10.1053/j.gastro.2010.05.081
Source: PubMed

ABSTRACT The atonal homolog 1 (Atoh1) transcription factor is required for intestinal secretory (goblet, Paneth, enteroendocrine) cell differentiation. Notch/gamma-secretase inhibitors (GSIs) block proliferation and induce secretory cell differentiation in the intestine. We used genetic analyses of mice to determine whether Atoh1 mediates the effects of GSIs in normal and cancerous intestinal epithelia.
We studied mice with intestine-specific disruption of Atoh1 (Atoh1(Deltaintestine)), the adenomatosis polyposis coli (APC)(min) mutation, both mutations (Atoh1(Deltaintestine); APC(min)), or littermate controls; mice were given GSI or vehicle. Colorectal cancer (CRC) cell lines were treated with GSI or vehicle and with small hairpin RNAs to reduce ATOH1. Differentiation and homeostasis were assessed by protein, RNA, and histologic analyses.
GSIs failed to induce secretory cell differentiation or apoptosis or decrease proliferation of Atoh1-null progenitor cells, compared with wild-type cells. Exposure of APC(min) adenomas to GSIs decreased proliferation and increased secretory cell numbers in an Atoh1-dependent manner. In CRC cells treated with GSI, ATOH1 levels were correlated inversely with proliferation. ATOH1 was required for secretory cell gene expression in cell lines and in mice.
ATOH1 is required for all effects of GSIs in intestinal crypts and adenomas; Notch has no unique function in intestinal progenitors and cancer cells other than to regulate ATOH1 expression. Reducing ATOH1 activity might mitigate intestinal toxicity from systemic GSI therapy for nonintestinal diseases. Among gastrointestinal malignancies, ATOH1 mediates the effects of GSIs, so ATOH1 expression levels might predict responses to these inhibitors. We propose that only the subset of CRCs that retain ATOH1 expression will respond to GSIs.

0 Bookmarks
 · 
87 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background & Aims ADAM10 is a cell surface sheddase that regulates physiological processes including Notch signaling. ADAM10 is expressed in all intestinal epithelial cell types but the requirement for ADAM10 signaling in crypt homeostasis is not well defined. Methods We analyzed intestinal tissues from mice with constitutive (Vil-Cre;Adam10f/f mice) and conditional (Vil-CreER;Adam10f/f and Lgr5-CreER;Adam10f/f mice) deletion of ADAM10. We performed cell lineage tracing experiments in mice that expressed a gain-of-function allele of Notch in the intestine (Rosa26NICD) or mice with intestine-specific disruption of Notch (Rosa26DN-MAML), to examine the effects of ADAM10 deletion on cell fate specification and intestinal stem cell maintenance. RESULTS Loss of ADAM10 from developing and adult intestine caused lethality associated with altered intestinal morphology, reduced progenitor cell proliferation, and increased secretory cell differentiation. ADAM10 deletion led to the replacement of intestinal cell progenitors with 2 distinct, post-mitotic, secretory cell lineages: intermediate-like (Paneth/goblet) and enteroendocrine cells. Based on analysis of Rosa26NICD and Rosa26DN-MAML mice, we determined that ADAM10 controls these cell fate decisions by regulating Notch signaling. Cell lineage tracing experiments showed that ADAM10 is required for survival of Lgr5+ crypt-based columnar cells. Our findings indicate that Notch-activated stem cells have a competitive advantage for occupation of the stem cell niche. Conclusions ADAM10 acts in a cell autonomous manner within the intestinal crypt compartment to regulate Notch signaling. This process is required for progenitor cell lineage specification and crypt-based columnar cell maintenance.
    Gastroenterology 10/2014; · 13.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proneural genes encode evolutionarily conserved basic-helix-loop-helix transcription factors. In Drosophila, proneural genes are required and sufficient to confer a neural identity onto naïve ectodermal cells, inducing delamination and subsequent neuronal differentiation. In vertebrates, proneural genes are expressed in cells that already have a neural identity, but they are still required and sufficient to initiate neurogenesis. In all organisms, proneural genes control neurogenesis by regulating Notch-mediated lateral inhibition and initiating the expression of downstream differentiation genes. The general mode of proneural gene function has thus been elucidated. However, the regulatory mechanisms that spatially and temporally control proneural gene function are only beginning to be deciphered. Understanding how proneural gene function is regulated is essential, as aberrant proneural gene expression has recently been linked to a variety of human diseases-ranging from cancer to neuropsychiatric illnesses and diabetes. Recent insights into proneural gene function in development and disease are highlighted herein.
    Current Topics in Developmental Biology 01/2014; 110C:75-127. · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We know more about the repertoire of cellular behaviours that define the stem and progenitor cells maintaining the intestinal epithelium than any other renewing tissue. Highly dynamic and stochastic processes define cell renewal. Historically the commitment step in differentiation is viewed as a ratchet, irreversibly promoting a given fate and corresponding to a programme imposed at the point of cell division. However, the emerging view of intestinal self-renewal is one of plasticity in which a stem cell state is easily reacquired. The pathway mediators of lineage selection are largely known but how they interface within highly dynamic populations to promote different lineages and yet permit plasticity is not. Advances in understanding gene regulation in the nervous system suggest possible mechanisms.
    Current Opinion in Cell Biology 07/2014; 31C:39-45. · 8.74 Impact Factor

Full-text (2 Sources)

Download
9 Downloads
Available from
May 21, 2014